Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-15T20:21:51.608Z Has data issue: false hasContentIssue false

Sustainability and Stewardship of Glyphosate and Glyphosate-Resistant Crops

Published online by Cambridge University Press:  20 January 2017

R. Douglas Sammons*
Affiliation:
Roundup Ready® Stewardship and Discovery
David C. Heering
Affiliation:
Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, MO 63167
Natalie Dinicola
Affiliation:
Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, MO 63167
Harvey Glick
Affiliation:
Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, MO 63167
Greg A. Elmore
Affiliation:
Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, MO 63167
*
Corresponding author's E-mail: [email protected]

Abstract

The significance of glyphosate and the appearance of glyphosate-resistant weeds have raised concerns about glyphosate sustainability. Resistance-prevention strategies, however, should first consider the mechanisms for resistance. For example, target-site resistance can provide virtual immunity, ensuring that every herbicide application successfully selects for resistance. However, metabolism and exclusion mechanisms provide lower magnitudes of resistance and are dependent on dosage. This discussion proposes that the relative risk of weed resistance is most highly correlated to mode of action (MOA), due to the respective principal mechanism for resistance. The development of data correlating agronomic practices with weed resistance vs. herbicide/MOA choices will be critical to the design of effective prevention strategies. Because resistance to glyphosate in weeds is typically of a low magnitude, using a high-dose strategy should minimize the potential for the selection of resistance and thus help to make the use of glyphosate sustainable. Maximizing weed control is the key to successful agronomic practice with limited weed resistance.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Armon, A., Graur, D., and Ben-Tal, N. 2001. Consurf: An algorithmic tool for the identification of functional regions in proteins by surface mapping of phyogenetic information. J. Mol. Biol. 307:447463.CrossRefGoogle Scholar
Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Biest, N. A., and Dill, G. M. 2002. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129:12651275.Google Scholar
Bennetzen, J. L. and Freeling, M. 1997. The unified grass genome: synergy in synteny. Genome Res. 7:301306.CrossRefGoogle ScholarPubMed
CaJacob, C. A., Feng, P. C. C., Heck, G. R., Alibhai, M. F., Sammons, R. D., and Padgette, S. R. 2004. Engineering resistance to herbicides. Pages 353372. in Christou, P. and Klee, H. eds. Handbook of Plant Biotechnology. Vol. 1. West Sussex, U.K. J. Wiley.Google Scholar
Carpenter, J., Felsot, A., Goode, T., Hammig, M., Onstad, D., and Sankalo, S. 2002. Comparative Environmental Impacts of Biotechnology-Derived and Traditional Soybean, Corn, and Cotton Crops. Ames, IA Council for Agricultural Science and Technology.Google Scholar
Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H., Bertain, B., Cho, H. J., Duck, N., Wong, J., Liu, D., and Lasser, M. 2004. Discovery and directed evolution of a glyphosate tolerance gene. Science 304:11511154.CrossRefGoogle ScholarPubMed
Coupland, D. 1985. Metabolism of glyphosate in plants. Pages 2534. in Grossbard, E. and Atkinson, D. eds. The Herbicide Glyphosate. London Butterworths.Google Scholar
Cummins, T. R., Dixon, D. P., Edwards, R., Cole, D. J., and Lapthorn, A. J. 2002. Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification. Biochemistry 41:70087020.Google Scholar
Davis, R. C., Fader, T. P., Humphreys, E. (ed.), Murray, E. A. (ed.), Clampett, W. S. (ed.), and Lewin, L. G. 1994. Cyperus difformis resistance to bensulfuron–methyl. Temperate rice—achievements and potential. Proceedings of a conference held at Leeton, New South Wales, Australia, 21–24 February 1994. 437p.Google Scholar
Deng, F. and Hatzios, K. K. 2002. Purification and characterization of two glutathione S-transferase isozymes from indica-type rice involved in herbicide detoxification. Pestic. Biochem. Physiol. 72:1023.Google Scholar
FAO/WHO 1997. Pesticide Residues in Food—Evaluations 1997. Part I—Residues. Joint Meeting of the FAO Panel of Experts Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. Rome Food and Agriculture Organization of the United Nations, FAO Plant Production and Protection Paper 158.Google Scholar
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G., and CaJacob, C. A. 2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci. 52:498505.Google Scholar
Franz, J. E., Mao, M. K., and Sikorski, J. A. 1997. Glyphosate: A Unique Global Herbicide. Washington, DC American Chemical Society Monograph 189.Google Scholar
Giesy, J. P., Dobson, S., and Solomon, K. R. 2000. Ecotoxicological risk assessment for Roundup herbicide. Rev. Environ. Contam. Toxicol. 167:35120.Google Scholar
Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., and Ben-Tal, N. 2003. Consurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163164.Google Scholar
Goss, G. A. and Dyer, W. E. 2003. Physiological characterization of auxinic herbicide-resistant biotypes of kochia (Kochia scoparia). Weed Sci. 51:839844.CrossRefGoogle Scholar
Grant, D., Cregan, P., and Shoemaker, R. C. 2000. Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybeans and Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 97:41684173.Google Scholar
Gressel, J. 1995. Creeping resistances: the outcome of using marginally-effective or reduced rates of herbicides. Pages 587590. in. Proceedings of the Brighton Crop Protection Conference: Weeds. Volume 2.Google Scholar
Gressel, J. 2002a. Molecular biology of weed control. New York Taylor and Francis.Google Scholar
Hall, B. G. 1999. Experimental evolution of Ebg enzyme provides clues about the evolution of catalysis and to evolutionary potential. FEMS Microbiol. Lett. 174:18.Google Scholar
Hall, B. G. 2002. Predicting evolution by in vitro evolution requires determining evolutionary pathways. Antimicrob. Agents Chemother 46:30353038.Google Scholar
Harvey, B. M. R. and Harper, D. B. 1982. Tolerance to bipyridylium herbicides. In LeBaron, H.M. and Gressel, J., eds, New York J. Wiley. 215.Google Scholar
Heap, I. 2004. The International Survey of Herbicide Resistant Weeds: Web page: http://www.weedscience.com. Accessed: January 1, 2002.Google Scholar
[HRAC] Herbicide Resistance Action Committee 2002. Classification of Herbicides According to Mode of Action: Web page: http://www.plantprotection.org/HRAC/. Accessed: January 1, 2002.Google Scholar
Hussey, P. and Anthony, R. G. 1997. Generation of dinitroaniline and phosphorothiomidate resistant transgenic plants using a mutant α-tubulin gene. Cell Biol. Int. 21:873874.Google Scholar
James, C. 2004. Preview: Global Status of Commercialized Biotech/GM Crops: 2004. Ithaca, NY ISAAA Brief 32 Web page: http://www.isaaa.org/kc/Publications/pdfs/isaaabriefs/Brief%2032.pdf.Google Scholar
Jander, G., Baerson, S. R., Hudak, J. A., Gonzalez, K. A., Gruys, K. J., and Last, R. L. 2003. Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol. 131:139146.Google Scholar
Ladner, D. W. 1991. Structure–Activity Relationships among the Imadazolinone Herbicides. in Shaner, D.L. and O'Connor, S.L., eds. The Imadazolinone Herbicides. Boca Raton, FL CRC Press. 31.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S. A. J., and Preston, C. 2003. Investigations into the mechanism of glyphosate resistance in Lolium rigidum . Pestic. Biochem. Physiol. 74:6272.Google Scholar
Marshall, G., Kirkwood, R. C., and Martin, D. J. 1987. Studies on the mode of action asulam, aminotriazole and glyphosate in Equisetum arvense L. (field horsetail). I. The uptake and translocation of [14C]asulam, [14C]aminotriazole and [14C]glyphosate. Pestic. Sci. 18:5564.Google Scholar
McGonigle, B., Keeler, S. J., and Lau, S. M. et al. 2000. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol. 124:11051120.Google Scholar
Milner, L. J., Reade, J. P. H., and Cobb, A. H. 2001. Developmental changes in glutathione S-transferase activity in herbicide-resistant populations of Alopecurus myosuroides Huds (black-grass) in the field. Pest Manag. Sci. 57:11001106.Google Scholar
Mizyed, S., Wright, J. E. I., Byczynski, B., and Berti, P. 2003. Identification of the catalytic residues of AroA (enolpyruvylshikimate 3-phosphate synthase) using partitioning analysis. Biochemistry 42:69866995.Google Scholar
Ng, C. H., Wickneswari, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2003. Gene polymorphisms in glyphosate-resistant and susceptible biotypes of Eleusine indica from Malaysia. Weed Res. 43:108115.Google Scholar
Padgette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. A., Delannay, X., Fuchs, R. L., Kishore, G. M., and Fraley, R. T. 1996. New weed control opportunities: development of soybeans with a Roundup Ready® gene. Pages 5384. in Duke, S. ed. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL: CRC Lewis.Google Scholar
Pang, S. S., Duggleby, R. G., and Guddat, L. W. 2002. Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J. Mol. Biol. 317:249.Google Scholar
Powles, S. B. and Holtum, J. A. M. 1994. Herbicide Resistance in Plants, Biology and Biochemistry. Ann Arbor, MI Lewis. 31.Google Scholar
Pupko, T., Bell, R. E., Mayrose, I., Glaser, F., and Ben-Tal, N. 2002. Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics 18(Suppl. 1):7177.CrossRefGoogle ScholarPubMed
Roberts, T. R. 1998. Organophosphorus Herbicides in Metabolic Pathways of Agrochemicals. Part 1: Herbicides and Plant Growth Regulators. Cambridge, U.K. The Royal Society of Chemistry. 396.Google Scholar
Rodionov, M. A. and Bludell, T. L. 1998. Sequence and structure conservation in a protein core. Proteins Struct. Funct. Genet. 33:358366.3.0.CO;2-0>CrossRefGoogle Scholar
Rossini, L., Frova, C., Pe, M. E., Mizzi, L., and Gorla, M. S. 1998. Alachlor regulation of maize gluthathione S-transferase genes. Pestic. Biochem. Physiol. 60:205211.Google Scholar
Schonbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N. S., and Kabsch, W. 2001. Interaction of the herbicide glyphosate with its target enzyme EPSP synthase in atomic detail. Proc. Natl. Acad. Sci. U.S.A. 98:13761380.CrossRefGoogle ScholarPubMed
Shimabukuro, R. H. 1990. Selectivity and mode of action of the postemergence herbicide diclofop-methyl. Plant Growth Regul. Soc. Am. Q. 18:3754.Google Scholar
Sidhu, R. S., Hammond, B. G., Fuchs, R. L., Mutz, J. N., Holden, L. R., George, B., and Olson, T. 2000. Glyphosate-tolerant corn: the composition and feeding value of grain from glyphosate-tolerant corn is equivalent to that of conventional corn (Zea mays L). J. Agric. Food Chem. 48:23052312.CrossRefGoogle ScholarPubMed
Soar, C. J., Karotam, J., Preston, C., and Powles, S. B. 2003. Reduced paraquat translocation in paraquat resistant Arctotheca calendula (L) Lenns is a consequence of the primary resistance mechanism not the cause. Pest. Biochem. Physiol. 76:9198.Google Scholar
Steinrucken, H. C. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimate-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94:12071212.Google Scholar
Stoltenberg, D. E. 2002. Weed management and agronomic risks associated with glyphosate-resistant corn and soybean cropping systems. Pages 200208. in. Proceedings of the 2002 Wisconsin Fertilizer, Aglime and Pest Management Conference. Vol. 41.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
U. S. Environmental Protection Agency 1993. Reregistration Eligibility Decision for Glyphosate. Washington, DC U. S. EPA EAP-738-F-93-011 Fact Sheet: http://www.epa.gov/oppsrrd1/REDs/factsheets/0178fact.pdf. Full RED: http://www.epa.gov/oppsrrd1/REDs/old_reds/glyphosate.pdf.Google Scholar
Van Erd, L. L., Hoagland, R. E., Zablotowicz, R. M., and Hall, J. C. 2003. Pesticide metabolism in plants and microorganisms. Weed Sci. 51:472495.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.Google Scholar
Vencill, W. K. 2002. Herbicide Handbook 2002. 8th ed. Lawrence, KS Weed Science Society of America.Google Scholar
Williams, G. M., Kroes, R., and Munro, I. C. 2000. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. 31:117165.Google Scholar