Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T10:40:18.813Z Has data issue: false hasContentIssue false

A Survey of Glyphosate-Resistant Waterhemp (Amaranthus rudis) in Missouri Soybean Fields and Prediction of Glyphosate Resistance in Future Waterhemp Populations Based on In-Field Observations and Management Practices

Published online by Cambridge University Press:  20 January 2017

Kristin K. Rosenbaum
Affiliation:
Division of Plant Sciences, 205 Waters Hall, University of Missouri, Columbia, MO 65211
Kevin W. Bradley*
Affiliation:
Division of Plant Sciences, 201 Waters Hall, University of Missouri, Columbia, MO 65211
*
Corresponding author's E-mail: [email protected]

Abstract

A survey of soybean fields containing waterhemp infestations was conducted just prior to harvest in 2008 and 2009 to determine the frequency and distribution of glyphosate-resistant waterhemp in Missouri, and to determine if there are any in-field parameters that may serve as indicators of glyphosate resistance in this species in future crop production systems. Glyphosate resistance was confirmed in 99 out of 144, or 69%, of the total waterhemp populations sampled, which occurred in 41 counties of Missouri. Populations of glyphosate-resistant waterhemp were more likely to occur in fields with no other weed species present at the end of the season, continuous cropping of soybean, exclusive use of glyphosate for several consecutive seasons, and waterhemp plants showing obvious signs of surviving herbicide treatment compared to fields characterized with glyphosate-susceptible waterhemp. Therefore, it is suggested that these four site parameters, and certain combinations of these parameters, serve as predictors of glyphosate resistance in future waterhemp populations.

En 2008 y 2009, poco antes de la cosecha, se realizó un estudio observacional en campos de soya infestados con Amaranthus rudis y/o Amaranthus tuberculatus para determinar la frecuencia y distribución de biotipos de estas especies resistentes a glyphosate en Missouri, y determinar si hay parámetros en campo que puedan ser usados como indicadores de resistencia a glyphosate en estas especies para futuros sistemas de producción de cultivos. Se confirmó la resistencia a glyphosate en 99 de 144, ó 69% del total de poblaciones muestreadas, lo cual ocurrió en 41 condados de Missouri. Las probabilidad de encontrar poblaciones de estas especies resistentes a glyphosate fue mayor en campos donde no se encontró ninguna otra especie de malezas al final de la temporada de crecimiento, en sistemas de cultivo continuo de soya, donde hubo uso exclusivo de glyphosate por varias temporadas consecutivas, y cuando las plantas de A. rudis o A. tuberculatus mostraron signos obvios de haber sobrevivido al tratamiento con herbicidas, al compararse con campos caracterizados por poblaciones susceptibles a glyphosate. De esta forma, se sugiere que estos cuatro parámetros de sitio, y ciertas combinaciones de estos parámetros, sirven como predictores de resistencia a glyphosate en futuras poblaciones de A. rudis y A. tuberculatus.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J. 2009. Herbicide resistance in weeds: influence of farm practices. http://www.prairiesoilsandcrops.ca/display_article.html?id=28. Accessed January 10, 2013.Google Scholar
Beckie, H. J. 2011. Herbicide-resistant weed management: focus on glyphosate. http://dx.doi.org/10.1002/ps.2195. Accessed January 10, 2013.Google Scholar
Beckie, H. J., Hall, L. M., Meers, S., Laslo, J. T., and Stevenson, F. C. 2004. Management practices influencing herbicide resistance in wild oat. Weed Technol. 18:853859.Google Scholar
Beckie, H. J., Heap, I. M., Smeda, R. J., and Hall, L. M. 2000. Screening for herbicide resistance in weeds. Weed Technol. 14:428445.CrossRefGoogle Scholar
Beckie, H. J., Leeson, J. Y., Thomas, A. G., Brenzil, C. A., Hall, L. M., Holzgang, G., Lozinski, C., and Shiriff, S. 2008. Weed resistance monitoring in the Canadian prairies. Weed Technol. 22:530543.Google Scholar
Beckie, H. J. and Reboud, X. 2009. Selecting for weed resistance: herbicide rotation and mixture. Weed Technol. 23:363370.Google Scholar
Beckie, H. J., Thomas, A. G., and Legere, A. 1999a. Nature, occurrence, and cost of herbicide-resistant green foxtail (Setaria viridis) across Saskatchewan ecoregions. Weed Technol. 13:626631.CrossRefGoogle Scholar
Beckie, H. J., Thomas, A. G., Legere, A., Kelner, D. J., Van Acker, R. C., and Meers, S. 1999b. Nature, occurrence, and cost of herbicide-resistant wild oat (Avena fatua) in small-grain production areas. Weed Technol. 13:612625.Google Scholar
Bourgeois, L., Morrision, I. N., and Kelner, D. 1997. Field and producer survey of ACCase resistant wild oat in Manitoba. Can. J. Plant Sci. 77:709715.Google Scholar
Bradley, K., Johnson, B., Smeda, R., and Boerboom, C. 2009. Integrated Pest Management: Practical Weed Science for the Field Scout-Corn and soybeans. University of Missouri Extension Publ. IPM1007. Pages 71 p.Google Scholar
Bradley, K. W., Legleiter, T., Hunter, L., Nichols, C., and Foresman, C. 2007. The status of glyphosate-resistant waterhemp in Missouri. North Central Weed Sci. Soc. Abstr. 192. [Abstract; CD-ROM computer file]Google Scholar
Chandler, K., Shrestha, A., and Swanton, C. J. 2001. Weed seed return as influenced by the critical weed-free period and row spacing of no-till glyphosate-resistant soybean. Can. J. Plant Sci. 81:877880.Google Scholar
Cordes, J. C., Johnson, W. G., Scharf, P., and Smeda, R. J. 2004. Late-emerging common waterhemp (Amaranthus rudis) interference in conventional tillage corn. Weed Technol. 18:9991005.Google Scholar
Davis, V. M., Gibson, K. D., and Johnson, W. G. 2008. A field survey to determine distribution and frequency of glyphosate-resistant horseweed (Conyza canadensis) in Indiana. Weed Technol. 22:331338.CrossRefGoogle Scholar
Davis, V. M., Gibson, K. D., Mock, V. A., and Johnson, W. G. 2009. In-field and soil-related factors that affect the presence and prediction of glyphosate-resistant horseweed (Conyza canadensis) populations collected from Indiana soybean fields. Weed Sci. 57:281289.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.Google Scholar
Givens, W. A., Shaw, D. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M.D.K., and Jordan, D. 2009. A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol. 23:156161.Google Scholar
Hager, A. and Sprague, C. 2002. Weeds on the horizon. The Bulletin. University of Illinois. 6:6172.Google Scholar
Hartzler, R. G., Battles, B. A., and Nordby, D. 2004. Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci. 52:242245.Google Scholar
Hartzler, R. G., Buhler, D. D., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47:578584.Google Scholar
Heap, I. 2013. The International Survey of Herbicide-Resistant Weeds. http://www.weedscience.com. Accessed January 10, 2013.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.Google Scholar
Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weeds Sci. 44:176193.Google Scholar
Jha, P., Norsworthy, J. K., Riley, M. B., Bielenberg, D. B., and Bridges, W. Jr. 2008. Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci. 56:729734.Google Scholar
Johnson, W. G. and Gibson, K. D. 2006. Glyphosate-resistant weeds and resistance management strategies: an Indiana grower perspective. Weed Technol. 20:768772.Google Scholar
Knezevic, S. Z., Evans, S. P., and Mainz, M. 2003. Row spacing influences the critical time for weed removal in soybean (Glycine max). Weed Technol. 17:666673.Google Scholar
Légére, A. and Schreiber, M. M. 1989. Competition and canopy architecture as affected by soybean (Glycine max) row width and density of redroot pigweed (Amaranthus retroflexus). Weed Sci. 37:8492.Google Scholar
Massinga, R. A., Currie, R. S., and Trooien, T. P. 2003. Water use and light interception under Palmer amaranth (Amaranthus palmeri) and corn competition. Weed Sci. 51:523531.CrossRefGoogle Scholar
Nelson, K. A. and Renner, K. A. 1998. Weed control in wide- and narrow-row soybean (Glycine max) with imazamox, imazethapyr, and CGA-277476 quizalofop. Weed Technol. 12:137144.Google Scholar
Nelson, K. A. and Renner, K. A. 1999. Weed management in wide- and narrow-row glyphosate resistant soybean. J. Prod. Agric. 12:460465.Google Scholar
Neve, P., Norsworthy, J. K., Smith, K. L., and Zelaya, I. A. 2011. Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in cotton. Weed Technol. 25:335343.Google Scholar
Nice, G. R., Bueghring, N. W., and Shaw, D. R. 2001. Sicklepod (Senna obtusifolia) response to shading, soybean (Glycine max) row spacing, and populations in three management systems. Weed Technol. 15:155162.Google Scholar
Nice, G., Johnson, B., and Bauman, T. 2007. Weed science surveys III: the perception of glyphosate-resistance. www.btny.purdue.edu/weedscience. Accessed August 20, 2012.Google Scholar
Nordby, D., Hartzler, B., and Bradley, K. 2007. Biology and Management of Waterhemp. Purdue Extension. GWC-13.Google Scholar
Norris, J. L., Shaw, D. R., and Snipes, C. E. 2002. Influence of row spacing and residual herbicides on weed control in glufosinate-resistant soybean (Glycine max). Weed Technol. 16:319325.Google Scholar
Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvold, G., Powles, S. B., Burgos, N. R., Witt, W. W., and Barrett, M. 2012. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. 60(Special Issue):3162.Google Scholar
Owen, M. J., Walsh, M. J., Llewellyn, R. S., and Powles, S. B. 2007. Widespread occurrence of multiple herbicide resistance in Western Australia annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res. 58:711718.Google Scholar
Patterson, M. G., Walker, R. H., Colvin, D. L., Wehtje, G., and McGuire, J. A. 1988. Comparison of soybean (Glycine max)-weed interference from large and small plots. Weed Sci. 36:836839.Google Scholar
Pratt, D. B. and Clark, L. G. 2001. Amaranthus rudis and A. tuberculatus-one species or two? J. Torrey Bot. Soc. 128:282296.Google Scholar
Preston, C., Wakelin, A. M., Dolman, F. C., Bostamam, Y., and Boutsalis, P. 2009. A decade of glyphosate-resistant Lolium around the world: mechanisms, genes, fitness, and agronomic management. Weed Sci. 57:435441.Google Scholar
Sauer, J. 1957. Recent migration and evolution of the dioecious amaranths. Evolution. 11:1131.Google Scholar
Schuster, C. L. and Smeda, R. W. 2006. Management of Amaranthus rudis S. in glyphosate-resistant corn (Zea mays L.) and soybean (Glycine max L. Merr.). Crop Prot. 26:14361443.Google Scholar
Steckel, L. E. and Sprague, C. L. 2004a. Late-season common waterhemp (Amaranthus rudis) interference in narrow- and wide-row soybean. Weed Technol. 18:947952.Google Scholar
Steckel, L. E. and Sprague, C. L. 2004b. Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci. 52:359364.Google Scholar
Stephenson, G. R., Dykstra, M. D., McLaren, R. D., and Hamill, A. S. 1990. Agronomic practices influencing triazine-resistant weed distribution in Ontario. Weed Technol. 4:199207.Google Scholar
[USDA] U.S. Department of Agriculture. 2011. United States Department of Agriculture: National Agriculture Statistics Service. http://www.nass.usda.gov/Statistics_by_State/Missouri/Publications/County_Estimates/index.asp. Accessed January 10, 2013.Google Scholar
USDA. 2013. The PLANTS Database. http://plants.usda.gov. Accessed January 10, 2013.Google Scholar
Waggoner, B. S. and Bradley, K.W. 2011. A survey of weed incidence and severity in response to management practices in Missouri soybean production fields. North Central Weed Sci. Soc. Abstr. 80. [CD-ROM Computer File}.North Central Weed Sci. Soc., Champaign, Il.Google Scholar
Wax, L. M. and Pendleton, J. W. 1968. Effect of row spacing on weed control in soybeans. Weed Sci. 16:462465.Google Scholar
Werth, J. A., Preston, C., Taylor, I. N., Charles, G. W., Roberts, G. N., and Baker, J. 2008. Managing the risk of glyphosate resistance in Australian glyphosate-resistant cotton production systems. Pest Manag. Sci. 64:417421.Google Scholar
Westhoven, A. M., Davis, V. M., Gibson, K. D., Weller, S. C., and Johnson, W. G. 2008. Field presence of glyphosate-resistant horseweed (Conyza canadensis) and common lambsquarters (Chenopodium album) and giant ragweed (Ambrosia trifida) biotypes with elevated tolerance to glyphosate. Weed Technol. 22:544548.Google Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., Vencil, W. K., and Webster, T. M. 2009. Establishing the geographical distribution and level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23:214220.Google Scholar
Yelverton, F. H. and Coble, H. D. 1991. Narrow row spacing and canopy formation reduces weed resurgence in soybean (Glycine max). Weed Technol. 5:169174.Google Scholar
Young, B. G., Young, J. M., Gonzini, L. C., Hart, S. E., Wax, L. M., and Kapusta, G. 2001. Weed management in narrow- and wide-row glyphosate-resistant soybean (Glycine max). Weed Technol. 15:112121.Google Scholar