Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T05:13:32.249Z Has data issue: false hasContentIssue false

Surface-Applied Calcium Phosphate Stimulates Weed Emergence in Flooded Rice

Published online by Cambridge University Press:  20 January 2017

Mark E. Lundy*
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
Albert J. Fischer
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
Chris Van Kessel
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
James E. Hill
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616 College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616
Matthew D. Ruark
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
Bruce A. Linquist
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
*
Corresponding author's E-mail: [email protected].

Abstract

Weeds are the major biotic constraint to rice production. Field observations have suggested that certain fertilizer regimes could enhance infestations of particular weed species emerging with rice. The study objective was to determine the effect of surface-applied calcium phosphate on weed growth in flooded California rice systems. In field and pot studies, triple superphosphate (TSP) applied to the soil surface increased weed emergence. Surface-applied TSP increased the number of sedge and broadleaf weeds, including smallflower umbrella sedge, blue-flowered ducksalad, redstem, ricefield bulrush, waterhyssop, and California arrowhead. A laboratory study measured germination of smallflower umbrella sedge and ricefield bulrush in response to the application of phosphorus (P) and calcium (Ca), which comprise 20 and 15% of TSP, respectively. Calcium stimulated smallflower umbrella sedge germination and had no effect on ricefield bulrush germination. Phosphorus did not stimulate either smallflower umbrella sedge or ricefield bulrush germination. Results indicate that surface applications of calcium phosphate increase the growth of certain weed species and that Ca may stimulate germination of smallflower umbrella sedge. By incorporating preplant applications of calcium phosphate into the soil profile, growers can reduce weed pressure from certain species. Alternatively, surface applications of calcium phosphate may be useful to stimulate weed emergence in stale-seedbed management.

Las malezas son la principal restricción biótica para la producción de arroz. Las observaciones de campo sugirieron que ciertos regímenes de fertilizantes pueden provocar infestaciones de especies particulares de malezas que emergen con el arroz. El objetivo de este estudio fue determinar el efecto de la aplicación de fosfato de calcio a la superficie en el crecimiento de la maleza en sistema por inundación en las siembras de arroz en California. La aplicación de súper fosfato triple (TSP) a la superficie del suelo, incrementó la emergencia de las malezas tanto en el campo como en macetas. La aplicación de TSP incrementó el número de juncos y malezas de hoja ancha, incluyendo Cyperus difformis L., Heteranthera rotundifolia (Kunth) Griseb, Ammannia coccinea Rottb, Schoenoplectus mucronatus (L.) Palla, Bacopa spp. L y Sagittaria montevidensis Cham. & Schlecht. Un estudio de laboratorio midió la germinanción de Cyperus difformis L y Schoenoplectus mucronatus (L.) Palla como respuesta a la aplicación de fósforo (P) y Calcio (Ca), los cuales comprenden el 20 y 15% de TSP, respectivamente. El calcio estimuló la germinación de Cyperus difformis L., y no tuvo efecto alguno en la germinación de y Schoenoplectus mucronatus (L.) Palla. El fósforo no estimuló la germinación de ninguna de las dos malezas antes mencionadas. Los resultados indican que las aplicaciones de fosfato de calcio en la superficie incrementan el crecimiento de ciertas especies de maleza y que el calcio podría estimular la germinación de Cyperus difformis L. Por medio de la incorporación de aplicaciones pre-siembra de fosfato de calcio al perfil del suelo, los productores pueden reducir la presión de ciertas especies de malezas. Alternativamente, las aplicaciones de fosfato de calcio en la superficie podrían ser útiles para estimular la emergencia de malezas en el manejo de semilleros caducos.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andreasen, C., Litz, A. S., and Streibig, J. C. 2006. Growth response of six weed species and spring barley (Hordeum vulgare) to increasing levels of nitrogen and phosphorus. Eur. Weed Res. Soc 46:503512.Google Scholar
Anil, V. S., Harmon, A. C., and Rao, K. S. 2000. Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiol 122:10351044.CrossRefGoogle ScholarPubMed
Anil, V. S. and Rao, K. S. 2001. Calcium-mediated signal transduction in plants: a perspective on the role of Ca2+ and CDPKs during early plant development. J. Plant Physiol 158:12371256.Google Scholar
Blackshaw, R. E., Brandt, R. N., Janzen, H. H., and Entz, T. 2004. Weed species response to phosphorus fertilization. Weed Sci 52:406412.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2009. Germination ecology of spiny (Amaranthus spinosus) and slender amaranth (A. viridis): troublesome weeds of direct-seeded rice. Weed Sci 57:379385.CrossRefGoogle Scholar
Diamond, R. B. 1985. Availability and management of phosphorus in wetland soils in relation to soil characteristics. Wetland Soils: Characterization, Classification and Utilization. Proceedings of a Workshop. Los Baños, Philippines: International Rice Research Institute. 269280.Google Scholar
DiTomaso, J. M. 1995. Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Sci 43:491497.Google Scholar
Fischer, A. J., Ateh, C. M., Bayer, D. E., and Hill, J. E. 2000. Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields. Weed Sci 48:225230.Google Scholar
Freyman, S., Kowalenko, C. G., and Hall, J. W. 1989. Effect of nitrogen, phosphorus, and potassium on weed emergence and subsequent weed communities in south coastal British Columbia. Can. J. Plant Sci 69:10011010.Google Scholar
Gibson, K. D., Fischer, A. J., Foin, T. C., and Hill, J. E. 2002. Implications of delayed Echinochloa spp. germination and duration of competition for integrated weed management in water-seeded rice. Weed Res 42:351358.Google Scholar
Gibson, K. D., Fischer, A. J., Foin, T. C., and Hill, J. E. 2003. Crop traits related to weed suppression in water-seeded rice. Weed Sci 51:8793.Google Scholar
Hamill, A. S., Marriage, P. B., and Friesen, G. A. 1977. A method for assessing herbicide performance in small plot experiments. Weed Sci 25:386389.Google Scholar
Hartley, C. G. 2006. Impact of Lime Applications on Plants and Soils in Flooded Rice Systems. Ph.D. dissertation. Davis, CA: University of California, Davis. 6465.Google Scholar
Hill, J. E., Carrierre, M. D., Cook, J. F., Butler, T. D., Lana, P. J., and Hare, J. 1994. Londax resistance management strategies for California rice. Pages 180185. in. Proceedings of the California Weed Conference, v. 46. Fremont, CA California Weed Conference.Google Scholar
Hoveland, C. S., Buchanan, G. A., and Harris, M. C. 1976. Response of weeds to soil phosphorus and potassium. Weed Sci 24:194201.Google Scholar
Kent, L. M. and Lauchli, A. 1985. Germination and seedling growth of cotton: salinity–calcium interactions. Plant Cell Environ 8:155159.Google Scholar
Kiselev, K. V., Gorpenchenko, T. Y., Tchernoded, G. K., Dubrovina, A. S., Grishchenko, O. V., Bulgakov, V. P., and Zhuravlev, Y. N. 2008. Calcium-dependent mechanism of somatic embryogenesis in Panax ginseng cell cultures expressing the rol-C oncogene. Mol. Biol 42:243252.Google Scholar
Klimecka, M. and Muszynska, G. 2007. Structure and functions of plant calcium-dependent protein kinases. Acta Biochim. Polon 54:219233.Google Scholar
Ludwig, A. A., Romeis, T., and Jones, J. D. G. 2004. CDPK-mediated signaling pathways: specificity and cross-talk. J. Exp. Bot 55:181188.CrossRefGoogle ScholarPubMed
Maclean, J. L., Dawe, D. C., Hardy, B., and Hettel, G. P. eds. 2002. Rice Almanac. 3rd ed. Wallingford, UK: CABI Publishing and Los Baños, Philippines: International Rice Research Institute. 253.Google Scholar
Mansoor, M. A. and Sandmann, B. J. 2002. Applied Physical Pharmacy. New York: McGraw-Hill Professional 5457.Google Scholar
Miao, S., McCormick, P., Newman, S., and Rajagopalan, S. 2001. Interactive effects of seed availability, water depth, and phosphorus enrichment on cattail colonization in an Everglades wetland. Wetlands Ecol. Manag 9:3947.Google Scholar
Mutters, R., Greer, C., Klonsky, K., and Livingston, P. 2007. Rice cost and return study (rice rotation only): Sacramento Valley. Davis, CA: UC Cooperative Extension, University of California, Davis. 1120.Google Scholar
Ni, H., Moody, K., Robles, R. P., Paller, E. C. Jr., and Lales, J. S. 2000. Oryza sativa plant traits conferring competitive ability against weeds. Weed Sci 48:200204.Google Scholar
Olsen, S. R. and Sommers, L. E. 1982. Phosphorus soluble in sodium bicarbonate. Pages 421422. in Page, A. L., Miller, R. H., and Keeney, D. R. eds. Methods of Soil Analysis. Part 2. Madison, WI: America Society of Agronomy.Google Scholar
Pandey, H. N., Misra, K. C., and Mukherjee, K. L. 1971. Phosphate uptake and its incorporation in some crop plants and their associated weeds. Ann. Bot 35:367372.CrossRefGoogle Scholar
Pusadee, T., Jamjod, S., Chiang, Y. C., Rerkasem, B., and Schaal, B. A. 2009. Genetic structure and isolation by distance in a landrace of Thai rice. Proc. Natl. Acad. Sci. U. S. A. 106:13,88013,885.Google Scholar
Rorison, I. H. and Robinson, D. 1984. Calcium as an environmental variable. Plant Cell Environ 7:381390.Google Scholar
Sanders, D., Pelloux, J., Brownlee, C., and Harper, J. F. 2002. Calcium at the crossroads of signaling. Plant Cell Online S401S417.Google Scholar
Santos, B. M., Dusky, J. A., Stall, W. M., and Gilreath, J. P. 2004. Influence of common lambsquarters (Chenopodium album L.) densities and phosphorus fertilization on lettuce. Crop Prot 23:173176.CrossRefGoogle Scholar
Seibert, A. C. and Pearce, R. B. 1993. Growth analysis of weed and crop species with reference to seed weight. Weed Sci 41:5256.CrossRefGoogle Scholar
Shahandeh, H., Hossner, L. R., and Turner, F. T. 1994. Phosphorus relationships in flooded rice soils with low extractable phosphorus. Soil Sci. Soc. Am. J. 58:11841189.Google Scholar
Smith, R. J. and Shaw, W. C. 1966. Weeds and their control in rice production. Washington, DC: Agricultural Research Service, U. S. Department of Agriculture in cooperation with Arkansas Agricultural Experiment Station. 7, 31.Google Scholar
Takahashi, K., Isobe, M., and Muto, S. 1997. An increase in cytosolic calcium ion concentration precedes hypoosmotic shock-induced activation of protein kinases in tobacco suspension culture cells. FEBS Lett 401:202206.Google Scholar
Tamura, S., Kuramochi, H., and Ishizawa, K. 2001. Involvement of calcium ion in the stimulated shoot elongation of arrowhead tubers under anaerobic conditions. Plant Cell Physiol 42:717722.Google Scholar
Tobe, K., Zhang, L., and Omasa, K. 2003. Alleviatory effects of calcium on the toxicity of sodium, potassium and magnesium chlorides to seed germination in three non-halophytes. Seed Sci. Res 13:4754.Google Scholar
Uhvits, R. 1946. Effect of osmotic pressure on water absorption and germination of alfalfa seeds. Am. J. Bot 33:278285.CrossRefGoogle Scholar
Vengris, J., Colby, W. G., and Drake, M. 1955. Plant nutrient competition between weeds and corn. Agron. J. 47:213216.Google Scholar