Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T04:13:46.388Z Has data issue: false hasContentIssue false

Soybean (Glycine max) Tolerance to Timing Applications of Pyroxasulfone, Flumioxazin, and Pyroxasulfone + Flumioxazin

Published online by Cambridge University Press:  20 January 2017

Kristen E. McNaughton*
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Ontario, N0P 2C0, Canada
Christy Shropshire
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Ontario, N0P 2C0, Canada
Darren E. Robinson
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Ontario, N0P 2C0, Canada
Peter H. Sikkema
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Ontario, N0P 2C0, Canada
*
Corresponding author's E-mail: [email protected].

Abstract

Four field studies were conducted over a 3-yr period (2011 to 2013) to determine the tolerance of four soybean cultivars to pyroxasulfone (89 and 178 g ai ha−1), flumioxazin (71 and 142 g ai ha−1), and pyroxasulfone + flumioxazin (160 and 320 g ai ha−1) applied either preplant incorporated (PPI), PRE, or at the soybean cotyledon stage (COT). When pyroxasulfone + flumioxazin was applied at 160 and 320 g ai ha−1, at the cotyledon stage soybean yield was decreased by 9 and 14%, respectively. The only other treatment that decreased soybean yield was pyroxasulfone (178 g ai ha−1) applied PPI; yield was decreased by 6% despite minimal injury and dry biomass reductions observed during the season. Soybean tolerance to pyroxasulfone or flumioxazin applied alone was generally similar and injury was less than with pyroxasulfone + flumioxazin. Similarly, herbicides applied PPI and PRE were less injurious to soybean than the COT timing. Results suggest that soybean is tolerant to PPI and PRE applications of pyroxasulfone + flumioxazin but COT applications should be avoided.

Se realizaron cuatro estudios de campo durante un período de 3 años (2011 a 22013) para determinar la tolerancia de cuatro cultivares de soya a pyroxasulfone (89 y 178 g ai ha−1), flumioxazin (71 y 142 g ai ha−1), y pyroxasfulone + flumioxazin (160 y 320 g ai ha−1) aplicados ya sea incorporados en presiembra (PPI), PRE, o en el estado cotiledonal de la soya (COT). Cuando se aplicó pyroxasulfone + flumioxazin a 160 y 320 g ai ha−1 en el estado cotiledonal, el rendimiento de la soya se redujo en 9 y 14%, respectivamente. El único otro tratamiento que disminuyó el rendimiento de la soya fue pyroxasulfone (178 g ai ha−1) aplicado PPI, en el cual el rendimiento se redujo 6% a pesar de que el daño y reducciones de biomasa seca observados fueron mínimos durante la temporada de crecimiento. La tolerancia de la soya a pyroxasulfone o flumioxazin aplicados solos fue generalmente similar y el daño fue menor que con pyroxasulfone + flumioxazin. Similarmente, los herbicidas aplicados PPI y PRE fueron menos dañinos a la soya que al aplicarse COT. Los resultados sugieren que la soya es tolerante a aplicaciones PPI y PRE de pyroxasulfon + flumioxazin, pero las aplicaciones COT deberían ser evitadas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2013a) Supplemental label—Zidua® herbicide. Research Triangle Park, NC: BASF. 4 pGoogle Scholar
Anonymous (2013b) Specimen label, Valtera® herbicide English label—20130730. Research Lane, ON: Valent. 14 pGoogle Scholar
Anonymous (2013c) Supplemental label—Fierce® herbicide. Walnut Creek, CA: Valent. 8 pGoogle Scholar
Curran, W, Lingenfelter, D (2013) Pyroxasulfone: The New Kid in the Neighborhood. Penn State Extension. http://extension.psu.edu/plants/crops/news/2013/04/pyroxasulfone-the-new-kid-in-the-neighborhood. Accessed February 5, 2014Google Scholar
Ellis, JM, Griffin, JL (2002) Benefits of soil-applied herbicides in glyphosate-resistant soybean (Glycine max). Weed Technol 16:541547 CrossRefGoogle Scholar
Heap, I (2014) The International Survey of Herbicide resistant weeds. http://www.weedscience.org. Accessed February 6, 2014Google Scholar
Mahoney, KJ, Shropshire, C, Sikkema, PH (2014) Weed management in conventional- and no-till soybean using flumioxazin/pyroxasulfone. Weed Technol. DOI: http://dx.doi.org/10.1614/WT-D-13-00128.1 CrossRefGoogle Scholar
[OMAFRA] Ontario Ministry of Agriculture and Food (2009) Agronomy Guide for Field Crops. Publication 811. Toronto, ON, Canada: Queen's Printer for Ontario. 306 pGoogle Scholar
Tanetani, Y, Kaku, K, Kawai, K, Fujioka, T, Shimizu, T (2009) Action mechanism of a novel herbicide, pyroxasulfone. Pestic Biochem Physiol 95:4755 CrossRefGoogle Scholar
Taylor-Lovell, S, Wax, LM, Bollero, G. (2002) Preemergence flumioxazin and pendimethalin and postemergence herbicide systems for soybean (Glycine max). Weed Technol 16:502511 CrossRefGoogle Scholar
Taylor-Lovell, S, Wax, LM, Nelson, R (2001) Phytotoxic response and yield of soybean (Glycine max) varieties treated with sulfentrazone or flumioxazin. Weed Technol 15:95102 CrossRefGoogle Scholar
Yoshida, R, Sakaki, M, Sato, R, Haga, T, Nagano, E, Oshio, H, Kamoshita, K (1991) A new N-phenyl phthalimide herbicide. Proc Brighton Crop Prot Conf Weeds 1:6975 Google Scholar