Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T02:52:28.888Z Has data issue: false hasContentIssue false

Soybean (Glycine max) Response to AC 263,222 and Chlorimuron as Influenced by Soil Moisture

Published online by Cambridge University Press:  12 June 2017

Larry J. Newsom
Affiliation:
Dep. Plant and Soil Sci., Mississippi State Univ., Mississippi State, MS 39762
David R. Shaw
Affiliation:
Dep. Plant and Soil Sci., Mississippi State Univ., Mississippi State, MS 39762

Abstract

Field experiments conducted in 1992 and 1993 evaluated differential response of 20 soybean cultivars to POST application of AC 263,222 or chlorimuron, as influenced by soil moisture. Natural rainfall was supplemented with overhead sprinkler irrigation to achieve three moisture regimes: excessive (12.5 cm/wk), optimum (5 cm/wk), and low (non-irrigated). Chlorimuron and AC 263,222 injured soybean. Excessive moisture did not increase soybean injury with chlorimuron for any of the cultivars tested compared to optimum moisture; however, 17 of 20 cultivars were injured more by AC 263,222 in combination with excessive moisture than optimum moisture. AC 263,222 reduced the height of five cultivars. Photosynthetic rate of several cultivars was reduced by both AC 263,222 and chlorimuron. Neither herbicide affected the number of nodes per main stem or seed weight; however, pod numbers were reduced for several cultivars with both herbicides. In the low moisture regime, AC 263,222 delayed the maturity of 18 of 20 cultivars with ‘Hutcheson’ maturity delayed 7.1 d. Excessive moisture when combined with AC 263,222 reduced yields for 12 cultivars, compared to five cultivars with chlorimuron. Under optimum moisture conditions, AC 263,222 reduced the yield of 10 cultivars, whereas chlorimuron reduced the yield of 9 cultivars. Low moisture stress only resulted in a yield reduction with 3 cultivars treated with AC 263,222.

Type
Research
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Colvin, D. L. and Brecke, B. J. 1993. Cadre rate and time of application for peanut (Arachis hypogaea) weed control. Proc. South. Weed Sci. Soc. 46:30.Google Scholar
2. Flagler, R. B., Patterson, R. P., Heagle, A. S., and Heck, W. W. 1987. Ozone and soil moisture deficit effects on nitrogen metabolism of soybean. Crop Sci. 27:11771184.Google Scholar
3. Grichar, W. J. and Nester, P. R. 1993. Control of nutsedge (Cyperus spp.) in peanut with Cadre. Proc. South. Weed Sci. Soc. 46:71.Google Scholar
4. Griffin, J. L. and Habetz, R. J. 1989. Soybean (Glycine max) tolerance to preemergence and postemergence herbicides. Weed Technol. 3:459462.Google Scholar
5. Griffin, J. L., Reynolds, D. B., Vidrine, P. R., and Bruff, S. A. 1993. Soybean (Glycine max) tolerance and sicklepod (Cassia obtusifolia) control with AC 263,222. Weed Technol. 7:331336.Google Scholar
6. Hayes, R. M. and Wax, L. M. 1975. Differential interspecific response of soybean cultivars to bentazon. Weed Sci. 23:516521.Google Scholar
7. Kent, L. M., Barrentine, W. L., and Wills, G. D. 1988. Response of twenty determinate soybean (Glycine max) cultivars to imazaquin. Proc. South. Weed Sci. Soc. 41:50.Google Scholar
8. King, C. A. and Oliver, L. R. 1992. Application rate and timing of acifluorfen, bentazon, chlorimuron, and imazaquin. Weed Technol. 6:526534.Google Scholar
9. Martin, D. M., Worthington, J. P., and Gray, E. 1987. Soybean (Glycine max) cultivar response to fluchloralin, metribuzin, and vernolate. Weed Technol. 1:282285.CrossRefGoogle Scholar
10. Miller, D. K. and Griffin, J. L. 1993. Influence of irrigation on soybean response to postemergence application of Cadre. Proc. South. Weed Sci. Soc. 46:54.Google Scholar
11. Moberg, W. K. 1990. Herbicides inhibiting branched-chain amino acid biosynthesis. Pestic. Sci. 29:241246.CrossRefGoogle Scholar
12. Moseley, C., Hatzios, K. K., and Hagood, E. S. 1993. Uptake, translocation, and metabolism of chlorimuron in soybean (Glycine max) and morningglory (Ipomoea spp.). Weed Technol. 7:343348.Google Scholar
13. Newsom, L. J. and Shaw, D. R. 1992. Soybean (Glycine max) cultivar tolerance to chlorimuron and imazaquin with varying hydroponic solution pH. Weed Technol. 6:382388.Google Scholar
14. Newsom, L. J. and Shaw, D. R. 1992. Soybean (Glycine max) response to chlorimuron and imazaquin as influenced by soil moisture. Weed Technol. 6:389395.Google Scholar
15. Newsom, L. J., Shaw, D. R., and Hydrick, D. E. 1992. Cultivar response of soybean to AC 263,222 as influenced by soil moisture. Proc. South. Weed Sci. Soc. 45:53.Google Scholar
16. Newsom, L. J. and Shaw, D. R. 1994. Influence of cultivation timing on weed control in soybean (Glycine max) with AC 263,222. Weed Technol. 8:760765.Google Scholar
17. Newsom, L. J., Shaw, D. R., and Hubbard, T. F. Jr. 1993. Absorption, translocation, and metabolism of AC 263,222 in peanut (Arachis hypogaea), soybean (Glycine max), and selected weeds. Weed Sci. 41:523527.Google Scholar
18. Newsom, L. J., Shaw, D. R., and Hubbard, T. F. Jr. 1995. Absorption, translocation, and metabolism of AC 263,222 in selected soybean (Glycine max) cultivars. Weed Sci. 43:in press.CrossRefGoogle Scholar
19. Osborne, B. T., Shaw, D. R., and Ratliff, R. L. 1995. Response of selected soybean (Glycine max) cultivars to dimethenamid and metolachlor in hydroponic conditions. Weed Technol. 9:178181.CrossRefGoogle Scholar
20. Osborne, B. T. and Shaw, D. R. 1995. Soybean (Glycine max) cultivar tolerance to SAN 582H and metolachlor as influenced by soil moisture. Weed Technol. 9:in press.Google Scholar
21. Pomeranke, G. J. and Nickell, C. D. 1988. Inheritance of chlorimuron ethyl sensitivity in the soybean strains BSR 101 and M74-462. Crop Sci. 28:5960.CrossRefGoogle Scholar
22. Shaw, D. R. and Wixson, M. B. 1991. Postemergence combinations of imazaquin or imazethapyr with AC 263,222 for weed control in soybean (Glycine max). Weed Sci. 39:644649.Google Scholar
23. Shaw, D. R., Newsom, L. J., and Smith, C. A. 1991. Influence of cultivation timing on chemical control of sicklepod (Cassia obtusifolia) in soybean (Glycine max). Weed Sci. 39:6772.Google Scholar
24. Smith, R. J. Jr. and Caviness, C. E. 1973. Differential responses of soybean cultivars to propanil. Weed Sci. 21:279281.CrossRefGoogle Scholar
25. Wax, L. M., Bernard, R. L., and Hayes, R. M. 1974. Response of soybean cultivars to bentazon, bromoxynil, chloroxuron, and 2,4-DB. Weed Sci. 22:3541.Google Scholar
26. Wilcut, J. W., Wehtje, G. R., Patterson, M. G., Cole, T. A., and Hicks, T. V. 1989. Absorption, translocation, and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37:175180.Google Scholar
27. Willard, T. S., Griffin, J. L., Reynolds, D. B., Vidrine, P. R., and Habetz, R. J. 1990. Evaluation of AC 263,222 in soybeans in Louisiana. Proc. South. Weed Sci. Soc. 43:29.Google Scholar
28. Wixson, M. B. and Shaw, D. R. 1991. Differential soybean (Glycine max) cultivar tolerance to AC 263,222. Weed Technol. 5:430433.Google Scholar
29. Wixson, M. B. and Shaw, D. R. 1991. Use of AC 263,222 for sicklepod (Cassia obtusifolia) control in soybean (Glycine max). Weed Technol. 5:434438.Google Scholar
30. Wixson, M. B. and Shaw, D. R. 1992. Effect of adjuvants on weed control and soybean (Glycine max) tolerance with AC 263,222. Weed Technol. 5:817822.Google Scholar
31. Wixson, M., Adcock, T., Muzyk, K., Walls, F., and Wiley, G. 1993. Weed control in peanut with Cadre herbicide. Proc. South. Weed Sci. Soc. 46:316.Google Scholar