Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T20:32:17.410Z Has data issue: false hasContentIssue false

Selective Broadleaf Weed Control in Turfgrass with the Bioherbicides Phoma macrostoma and Thaxtomin A

Published online by Cambridge University Press:  20 January 2017

Joseph C. Wolfe
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
Joseph C. Neal
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
Christopher D. Harlow*
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
*
Corresponding author's E-mail: [email protected]

Abstract

Both regulatory and consumer forces have increased the demand for biopesticides, particularly in amenity areas such as turfgrass. Unfortunately, few natural products are available for selective weed control in turfgrass. Two bioherbicides reported to control broadleaf weeds without injuring turfgrass are Phoma macrostoma and thaxtomin A. Field and container experiments were conducted to evaluate PRE and POST efficacy of P. macrostoma and thaxtomin A on regionally important broadleaf weeds. In container experiments, PRE applications of P. macrostoma provided 65 to 100% control of dandelion, marsh yellowcress, and flexuous bittercress, equivalent to that of pendimethalin. Control of yellow woodsorrel, henbit, hairy galinsoga, common chickweed, or annual bluegrass was less than with pendimethalin. In contrast, POST applications did not control any species as well as an industry-standard synthetic auxin herbicide. PRE or POST applications of thaxtomin A controlled six of the eight species tested as well as the industry-standard PRE or POST herbicides. In field tests, overall PRE broadleaf weed control with P. macrostoma and thaxtomin A peaked 4 wk after treatment at 64 and 72%, respectively, and declined afterward, suggesting that these bioherbicides possess short residuals and therefore must be reapplied for season-long control. Overall POST broadleaf weed control using P. macrostoma and thaxtomin A was only 41 and 25%, respectively. PRE followed by early-POST applications of thaxtomin A provided ≥ 86% henbit control. These results suggest that both P. macrostoma and thaxtomin A are capable of controlling certain broadleaf weeds in turfgrass. However, both lack efficacy on some important weed species, particularly chickweed. Thaxtomin A efficacy on henbit was improved by increased dose and by PRE followed by early-POST applications.

Tanto fuerzas regulatorias como los consumidores han incrementado la demanda por biopesticidas, particularmente en áreas amenas tales como áreas con césped. Desafortunadamente, hay pocos productos naturales disponibles para el control selectivo de malezas en céspedes. Dos bioherbicidas reportados para el control de malezas de hoja ancha sin causar daño al césped son Phoma macrostoma y thaxtomin A. Experimentos de campo y en contenedores fueron realizados para evaluar la eficacia de P. macrostoma y thaxtomin A PRE y POST en malezas de hoja ancha importantes en la región. En experimentos con contenedores, las aplicaciones PRE de P. macrostoma brindó 65 a 100% de control de Taraxacum officinale, Rorippa palustris, y Cardamine flexuosa, el cual fue equivalente al control con pendimethalin. El control de Oxalis stricta, Lamium amplexicaule, Galinsoga quadriradiata, Stellaria media, o Poa annua fue menor que con pendimethalin. En contraste, las aplicaciones POST no controlaron ninguna de las especies tan bien como un herbicida sintético auxinic estándar en la industria. Las aplicaciones PRE o POST de thaxtomin A controlaron seis de las ocho especies evaluadas tan bien como los herbicidas PRE y POST estándar en la industria. En los ensayos de campo, en general el control PRE de malezas de hoja ancha con P. macrostoma y thaxtomin A alcanzó el máximo nivel 4 semanas después del tratamiento con 64 y 72%, respectivamente, y declinó después de este momento, sugiriendo que estos bioherbicidas poseen un corto efecto residual, por lo que deben ser reaplicados para obtener control a lo largo de toda la temporada. En general, el control POST de malezas de hoja ancha usando P. macrostoma y thaxtomin A fue solamente 41 y 25%, respectivamente. Aplicaciones PRE seguidas por POST-tempranas de thaxtomin A brindaron ≥86% de control de L. amplexicaule. Estos resultados sugieren que P. macrostoma y thaxtomin A son capaces de controlar algunas malezas de hoja ancha en céspedes. Sin embargo, ambos carecen de eficacia en el control de algunas especies de malezas importantes, particularmente S. media. La eficacia de thaxtomin A en L. amplexicaule fue mejorada al aumentar la dosis y al hacer aplicaciones PRE seguidas de aplicaciones POST-tempranas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Prashant Jha, Montana State University.

References

Literature Cited

Abu-Dieyeh, MH, Watson, AK (2007) Population dynamics of broadleaf weeds in turfgrass as influenced by chemical and biological control methods. Weed Sci 55: 371380 CrossRefGoogle Scholar
Anonymous (2009) Proposed Registration Action Document: Iron HEDTA. United States Environmental Protection Agency . http://www.epa.gov/pesticides/chem_search/reg_; actions/registration/decision_PC-034702_17-Sep-09.pdf. Accessed July 10, 2014. 16 pGoogle Scholar
Anonymous (2016) Biopesticides market—global industry analysis, size, share, growth and forecast 2015 – 2023. Transparancy Market Research http://www.transparencymarketresearch.com/biopesticides-market.html. Accessed February 27, 2016Google Scholar
Bailey, K, Falk, S, Lombardo, S (2009) Status of Phoma macrostoma, a bioherbicide for broadleaved weed control in turfgrass. Pages 4041 in Proceedings of the IXth International Bioherbicide Group Workshop. Orlando, FL http://ibg.ba.cnr.it/wp-content/uploads/2015/02/IX_IBG_Workshop_Orlando2009.pdf. Accessed January 20, 2016Google Scholar
Bailey, KL, Boyetchko, SM, Längle, T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52: 221229 CrossRefGoogle Scholar
Bailey, KL, Pitt, WM, Falk, S, Derby, J (2011) The effects of Phoma macrostoma on nontarget plant and target weed species. Biol Control 58: 379386 CrossRefGoogle Scholar
Bélair, G, Koppenhöfer, AM, Dionne, J, Simard, L (2010) Current and potential use of pathogens in the management of turfgrass insects as affected by new pesticide regulations in North America. Int J Pest Manage 56: 5160 CrossRefGoogle Scholar
Bourdôt, GW, Saville, DJ, Jong, MD (2011) Evaluating the environmental safety of broad-host-range bioherbicides. Pest Technol 5: 3440 Google Scholar
Chandler, D, Bailey, AS, Tatchell, GM, Davidson, G, Greaves, J, Grant, WP (2011) The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366 (1573): 19871998 CrossRefGoogle ScholarPubMed
Evans, HC, Seier, MK, Derby, JA, Falk, S, Bailey, KL (2013) Tracing the origins of white tip disease of Cirsium arvense and its causal agent, Phoma macrostoma . Weed Res 53: 4252 CrossRefGoogle Scholar
Fenoll, J, Vela, N, Navarro, G, Perez-Lucas, G, Navarro, S (2014) Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil. Sci Total Environ 494: 124132 CrossRefGoogle Scholar
Frans, RE, Talbert, R, Marx, D, Crowley, H (1986) Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, D, ed. Research Methods in Weed Science. 3rd edn. Champaign, IL: Southern Weed Science Society Google Scholar
Fry, BA, Loria, R (2002) Thaxtomin A: evidence for a plant cell wall target. Physiol Mol Plant Pathol 60: 18 CrossRefGoogle Scholar
Grant, J (2011) The child safe playing fields act: NY's ban on pesticide use on school and day care center grounds. http://www.hort.cornell.edu/turf/pdfs/school_ban_CUTT_2011.pdf. Accessed May 25, 2015Google Scholar
Grewal, PS (1999) Factors in the success and failure of microbial control in turfgrass. Integrated Pest Manag Rev 4: 287294 CrossRefGoogle Scholar
Grey, TL, McCullough, PE (2012) Sulfonylurea herbicides’ fate in soil: dissipation, mobility, and other processes. Weed Technol 26: 579581.CrossRefGoogle Scholar
Grube, A, Donaldson, D, Kiely, T, Wu, L (2011) Pesticide industry sales and usage: 2006 and 2007 estimates. Washington, DC: U.S. Environmental Protection Agency. 41 pGoogle Scholar
Harding, DP, Raizada, MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci 6: 659 CrossRefGoogle ScholarPubMed
Hernke, MT, Podein, RI (2011) Sustainability, health and precautionary perspectives on lawn pesticides and alternatives. EcoHealth 8: 223232 CrossRefGoogle ScholarPubMed
Hoskins, TC, Owen, JS, Fields, JS (2014) Solute transport through a pine bark-based substrate under saturated and unsaturated conditions. J Am Soc Hortic Sci 139: 634641 CrossRefGoogle Scholar
Keeley, SJ, Zhou, H (2005) Preemergence herbicide and seeding method effects on seedling growth of Kentucky bluegrass. Weed Technol 19: 4346 CrossRefGoogle Scholar
King, RR, Lawrence, CH, Calhoun, LA (1992) Chemistry of phytotoxins associated with Streptomyces scabies, the causal organism of potato common scab. J Agric Food Chem 40: 834837 Google Scholar
King, RR, Lawrence, CH, Gray, JA (2001) Herbicidal properties of the thaxtomin group of phytotoxins. J Agric Food Chem 49: 22982301 CrossRefGoogle ScholarPubMed
Liu, DLY, Christians, NE, Garbutt, JT (1994) Herbicidal activity of hydrolyzed corn gluten meal on three grass species under controlled environments. J Plant Growth Regul 13: 221226 CrossRefGoogle Scholar
McDade, MC, Christians, NE (2000) Corn gluten meal—a natural preemergence herbicide: effect on vegetable seedling survival and weed cover. Am J Alternative Agric 15: 189 CrossRefGoogle Scholar
Neal, JC, Osmeloski, JF (1992) Dithiopyr residue effects on turfgrass seedling establishment. Proc Northeast Weed Sci Soc 46: 133 Google Scholar
Neal, JC, Schiavone, R, Harlow, C. (2013a) Seedling broadleaf weed control with MBI-005. Proc Northeast Weed Sci Soc 67: 98 Google Scholar
Neal, JC, Shew, B, Schiavone, R (2013b) Temperature and dose influence Phoma macrostoma efficacy on broadleaf weeds. Pages 2933 in Proceedings of the IXth International Bioherbicide Group Workshop. Beijing, China Google Scholar
Porpiglia, P, Towne, O, Houseworth, D (1996) Overview of the turf weed control market in the USA. Pestic Sci 47: 387388 3.0.CO;2-1>CrossRefGoogle Scholar
Riddle, G, Burpee, L, Boland, G (1991) Virulence of Sclerotinia sclerotiorum and S. minor on dandelion (Taraxacum officinale). Weed Sci 39: 109118 CrossRefGoogle Scholar
Rosenkrantz, RT, Cedergreen, N, Baun, A, Kusk, KO (2013) Influence of pH, light cycle, and temperature on ecotoxicity of four sulfonylurea herbicides towards Lemna gibba . Ecotoxicology 22: 3341 CrossRefGoogle ScholarPubMed
Schnick, PJ, Stewart-Wade, S, Boland, GJ (2002) 2,4-D and Sclerotinia minor to control common dandelion. Weed Sci 50: 173178 CrossRefGoogle Scholar
Siva, C (2014) Alternative strategies for broadleaf weed management in residential lawns . MS thesis. Guelph, ON: The University of Guelph. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/8046/Siva_Cynthia_201405_Msc.pdf?sequence=1. Accessed May 24, 2015. 157 pGoogle Scholar
St. John, R, DeMuro, N (2013) Efficacy of corn gluten meal for common dandelion and smooth crabgrass control compared to nitrogen fertilizers. Appl Turfgrass Sci DOI: 10.1094/ATS-2013-0426-01-RSCrossRefGoogle Scholar
Webster TM ed. (2012) Weed survey—southern states 2012. Proc South Weed Sci Soc 65: 282285 Google Scholar
Wehtje, G, Gilliam, CH, Marble, SC (2012) Duration of flumioxazin-based weed control in container-grown nursery crops. Weed Technol 26: 679683 CrossRefGoogle Scholar
Wilen, C (2012) Preliminary Report on Iron HEDTA: A Natural Selective Herbicide. Retail Nursery IPM Newsletter. http://www.ipm.ucdavis.edu/PDF/PUBS/retailipmnews. 2012.mar.pdf. Accessed July 10, 2014Google Scholar
Zimdahl, R (2013) Fundamentals of Weed Science. 4th edn. San Diego, CA: Elsevier. 664 pGoogle Scholar