Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T09:55:49.347Z Has data issue: false hasContentIssue false

Seashore Paspalum Seedhead Control and Growth Regulation with Flazasulfuron and Trinexapac-Ethyl

Published online by Cambridge University Press:  20 January 2017

Patrick E. McCullough*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223-1797
William Nutt
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223-1797
Tim R. Murphy
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223-1797
Paul Raymer
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223-1797
*
Corresponding author's E-mail: [email protected]

Abstract

Seashore paspalum is used on golf courses in warm temperate regions, but prolific growth and seedhead development may reduce turfgrass quality. Field experiments were conducted to investigate efficacy of flazasulfuron and trinexapac-ethyl on seashore paspalum seedhead suppression, clipping reduction, and canopy height. Flazasulfuron applied from 4.5 to 27 g ai ha−1 increased clipping reductions from the untreated by 22 to 75% and seedhead suppression from the untreated by 16 to 86% at 2 to 4 wk after treatment. Trinexapac-ethyl applied alone at 96 g ai ha−1 provided erratic levels of seedhead suppression from the untreated, but reduced clippings by approximately 50 to 75% from nontreated by 2 to 4 wk after treatment. On several dates, trinexapac-ethyl enhanced clipping reductions and seedhead suppression from flazasulfuron compared to flazasulfuron alone. Trinexapac-ethyl exacerbated seashore paspalum injury from high flazasulfuron rates (18 to 27 g ha−1) but injury never exceeded 23%. Trinexapac-ethyl reduced seashore paspalum height by 50% in unmowed areas at 16 wk. Flazasulfuron at 16 or 27 g ha−1 with trinexapac-ethyl provided consistent seedhead suppression and clipping reductions ranging from approximately 70 to 95% of nontreated. These tank-mixtures have promising implications for use in seashore paspalum golf course fairways.

Paspalum vaginatum se usa para campos de golf en regiones cálido-templadas, pero el crecimiento prolífico y el desarrollo de la inflorescencia pueden reducir la calidad del césped. Se realizaron experimentos de campo para investigar la eficacia de flazasulfurón y trinexapac-etil en la supresión de inflorescencias, reducción en los cortes y la altura de P. vaginatum. El flazasulfurón aplicado de 4.5 a 27 g ia/ha, en comparación con el testigo no tratado, redujo los cortes de 22 a 75% y suprimió el desarrollo de las inflorescencias de 16 a 86%, de dos a cuatro semanas posteriores al tratamiento. Comparado con el testigo no tratado, el trinexapac-etil aplicado por sí solo a 96 g ia/ha, proporcionó niveles erráticos de supresión de la inflorescencia, pero redujo los cortes en aproximadamente 50 a 75%, por dos a cuatro semanas después del tratamiento. En varias fechas, la aplicación de trinexapac-etil en combinación con flazasulfurón, mejoró las reducciones en los cortes y la supresión de inflorescencias en comparación con la aplicación de solo flazasulfurón. El trinexapac-etil asociado con altas dosis de flazasulfurón (18 a 27 g/ha), agravó el daño en P. vaginatum pero dicho daño nunca excedió 23%. El trinexapac-etil redujo la altura de P. vaginatum en 50% en las áreas sin cortar y proporcionó consistente supresión de inflorescencias y reducciones en los cortes, que variaron aproximadamente de 70 a 95% en comparación con el testigo no tratado. Estas mezclas tienen implicaciones prometedoras para su uso en P. vaginatum establecido en áreas de calles de campos de golf.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous 2009. Primo Maxx® Label. Greensboro, NC Syngenta Crop Protection. 7 p.Google Scholar
Beyrouty, C. A., West, C. P., and Gbur, E. E. 1989. Root development of bermudagrass and tall fescue as affected by cutting interval and growth regulators. Plant Soil 127:2330.Google Scholar
Brecke, B. J., Hutto, K. C., and Unruh, J. B. 2008. Postemergence southern crabgrass (Digitaria ciliaris) control with sulfonylurea herbicides. Weed Technol. 22:354358.Google Scholar
Bunnell, B. T., McCarty, L. B., Faust, J. E., Bridges, W. C., and Rajapakse, N. H. 2005. ‘TifEagle’ bermudagrass response to growth factors and mowing height when grown at various hours of sunlight. Crop Sci 45:575581.Google Scholar
Coleman, R. L. and Wilson, G. P. M. 1960. The effects of floods on pasture plants. Agricultural Gazette, New South Wales 71:337347.Google Scholar
Dickens, R. 1987. Controlling seedheads in tall fescue with herbicides. Transportation Res. Rec 1127:4449.Google Scholar
Dudeck, A. E. and Peacock, C. H. 1985. Effects of salinity on seashore turfgrasses. Agron. J. 77:4750.Google Scholar
Duncan, R. R. 1994. Seashore paspalum may be grass for the year 2000. South. Turf Manag 5:3132.Google Scholar
Duncan, R. R. 1999. Environmentally compatibility of seashore paspalum (saltwater couch) for golf courses and other recreational uses. II. Management protocols. Int. Turfgrass Res. J. 8:12301239.Google Scholar
Elkins, D. M. 1974. Chemical suppression of tall fescue seedhead development and growth. Agron. J. 66:426429.Google Scholar
Fagerness, M. J. and Penner, D. 1998. Evaluation of V-10029 and trinexapac-ethyl for annual bluegrass seedhead suppression and growth regulation of five cool-season turfgrass species. Weed Technol. 12:436440.Google Scholar
Fagerness, M. J. and Yelverton, F. H. 2000. Tissue production and quality of Tifway bermudagrass as affected by seasonal application patterns of trinexapac-ethyl. Crop Sci 40:493497.Google Scholar
Fan, G., Bian, X., Li, H., Meng, Z., and Liu, S. 2009. Growth responses of Kentucky bluegrass (Poa pratensis L.) to trinexapac-ethyl applied in spring and autumn. Front. Agric. China 3:186189.Google Scholar
Golembiewski, R. C. and Dannerberger, T. K. 1998. Dollar spot severity as influenced by trinexapac-ethyl, creeping bentgrass cultivar, and nitrogen fertility. Agron. J. 90:466470.Google Scholar
Heckman, N. L., Horst, G. L., and Gaussoin, R. E. 2001a. Influence of trinexapac-ethyl on specific leaf weight and chlorophyll content on Poa pratensis . Int. Turf. Soc. Res. J. 9:287290.Google Scholar
Heckman, N. L., Horst, G. L., Gaussoin, R. E., and Frank, K. W. 2001b. Storage and handling characteristics of trinexapac-ethyl treated Kentucky bluegrass sod. HortScience 36:11271130.Google Scholar
Hixson, A. C., Gannon, T. W., and Yelverton, F. H. 2007. Efficacy of application placement equipment for tall fescue (Lolium arundinaceum) growth and seedhead suppression. Weed Technol. 21:801806.Google Scholar
Hutto, K. C., Brecke, B. J., and Unruh, J. B. 2008a. Comparison of flazasulfuron to pyridine herbicides for Virginia buttonweed (Diodia virginiana) control. Weed Technol. 22:351353.Google Scholar
Hutto, K. C., Taylor, J. M., and Byrd, J. D. 2008b. Soil temperature as an application indicator for perennial ryegrass control. Weed Technol. 22:245248.Google Scholar
Inguagiato, J. C., Murphy, J. A., and Clarke, B. B. 2009. Anthracnose of annual bluegrass putting green turf influenced by trinexapac-ethyl application interval and rate. Int. Turf. Soc 11:207218.Google Scholar
Jiang, H. and Fry, J. 1998. Drought responses of perennial ryegrass treated with plant growth regulators. HortScience 33:270273.Google Scholar
Jiang, Y., Duncan, R. R., and Carrow, R. N. 2004. Assessment of low light tolerance of seashore paspalum and bermudagrass. Crop Sci 44:587594.Google Scholar
Johnson, B. J. 1989a. Response of tall fescue (Festuca arundinacea) to plant growth regulator application dates. Weed Technol. 3:408413.Google Scholar
Johnson, B. J. 1989b. Response of tall fescue (Festuca arundinacea) to plant growth regulators and mowing frequency. Weed Technol. 3:5459.Google Scholar
Johnson, B. J. 1990. Response of bahiagrass (Paspalum notatum) to plant growth regulators. Weed Technol. 4:895899.Google Scholar
Johnson, B. J. 1992. Response of bermudagrass (Cynodon spp.) to CGA 163935. Weed Technol. 6:577582.Google Scholar
Johnson, B. J. 1994. Influence of plant growth regulators and mowing on two bermudagrasses. Agron. J. 86:805810.Google Scholar
Johnson, B. J. 1997. Growth of ‘Tifway’ bermudagrass following application of nitrogen and iron with trinexapac-ethyl. HortScience 32:241242.Google Scholar
McCarty, L. B., Weinbrecht, J. S., Toler, J. E., and Miller, G. L. 2004. St. Augustinegrass response to plant growth regulators. Crop Sci 44:13231329.Google Scholar
McCullough, P. E., Liu, H., McCarty, L. B., Whitwell, T., and Toler, J. E. 2006. Bermudagrass putting green growth, color, and nutrient partitioning influenced by nitrogen and trinexapac-ethyl. Crop Sci 46:15151525.Google Scholar
Morton, J. F. 1973. Salt-tolerant siltgrass (Paspalum vaginatum Sw.). Proc. Fla. State Hort. Soc 86:482490.Google Scholar
Nelson, L. S., Getsinger, K. D., and Luu, K. T. 1993. Effect of chemical treatments on bahiagrass (Paspalum notatum) suppression. Weed Technol. 7:127133.Google Scholar
Qian, Y. L. and Engelke, M. C. 1999. Influence of trinexapac-ethyl on ‘Diamond’ zoysiagrass in a shade environment. Crop Sci 39:202208.Google Scholar
Skerman, P. J. and Riveros, F. 1990. Tropical grasses. Rome Food and Agricultural Organization of the United Nations. Pp. 565568.Google Scholar
Spak, D. R., DiPaola, J. M., Lewis, W. A., and Anderson, C. E. 1993. Tall fescue sward dynamics: II. Influence of four plant growth regulators. Crop Sci 33:304310.Google Scholar
Totten, F. W., Toler, J. E., and McCarty, L. B. 2006. ‘Tifway’ bermudagrass growth regulation with the use of trinexapac-ethyl and flurprimidol. Weed Technol. 20:702705.Google Scholar
Trenholm, L. E., Carrow, R. N., and Duncan, R. R. 2000. Mechanisms of wear tolerance in seashore paspalum and bermudagrass. Crop Sci 40:13501357.Google Scholar
Trenholm, L. E., Duncan, R. R., and Carrow, R. N. 1999. Wear tolerance, shoot performance, and spectral reflectance of seashore paspalum and bermudagrass. Crop Sci 39:11471152.Google Scholar
Watschke, T. L., Prinster, M. G., and Brenninger, J. M. 1992. Plant growth regulators and turfgrass management. Pages 557588. In Waddington, D. V., Carrow, R. N., and Shearman, R. C. eds. Turfgrass. Agronomy Monograph No. 32. Madison, WI American Society of Agronomy.Google Scholar