Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T03:02:32.600Z Has data issue: false hasContentIssue false

Responses of a Waterhemp (Amaranthus tuberculatus) Population Resistant to HPPD-Inhibiting Herbicides to Foliar-Applied Herbicides

Published online by Cambridge University Press:  20 January 2017

Nicholas E. Hausman
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Patrick J. Tranel
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Dean E. Riechers
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Aaron G. Hager*
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Field and greenhouse experiments were conducted to characterize the response of a waterhemp population from McLean County, IL to foliar-applied 4-hydroxyphenylpyruvate dioxygenase (HPPD) –inhibiting herbicides and determine the population's sensitivity to herbicides from other site-of-action groups. In the field, 10 to 15–cm-tall waterhemp treated with mesotrione at 105 g ai ha−1, tembotrione at 92 g ai ha−1, or topromezone at 18 g ai ha−1 had significantly greater biomass (≥ 10%) 14 d after treatment (DAT) than waterhemp harvested the day of herbicide application, indicating growth had occurred following herbicide application. Waterhemp growth stage at the time of herbicide application influenced control. Mesotrione applied at 105 g ha−1 alone or combined with atrazine at 560 g ai ha−1 provided significantly greater waterhemp control (≥ 66%) when applied to small waterhemp plants (2 to 5 cm tall) compared with applications made to plants 5 to 10 or 10 to 15 cm tall. Glyphosate, glufosinate, fomesafen, lactofen, or acifluorfen provided greater waterhemp control (≥ 68%) 7 and 14 DAT than mesotrione, dicamba, or 2,4-D. Control of this population with atrazine, chlorimuron, and imazethapyr did not exceed 12%. Results of a greenhouse experiment with waterhemp plants grown from field-collected seed were similar to field data, and confirm the McLean County population was poorly controlled with HPPD, photosystem II, and acetolactate synthase inhibitors.

Experimentos de campo e invernadero fueron realizados para caracterizar la respuesta de una población de Amaranthus tuberculatus proveniente del condado McLean en Illinois, a la aplicación foliar de herbicidas inhibidores de 4-hydroxyphenylpyruvate dioxygenase (HPPD) y determinar la sensibilidad de la población a herbicidas de grupos con otros sitios de acción. En el campo, plantas de A. tuberculatus de 10 a 15 cm de altura, tratadas con mesotrione a 105 g ai ha−1, tembotrione a 92 g ai ha−1, o topramezone a 18 g ai ha−1, tuvieron una biomasa significativamente mayor (≥10%) 14 d después del tratamiento (DAT) que A. tuberculatus cosechado el día de la aplicación del herbicida, indicando que hubo crecimiento después de la aplicación del herbicida. El estadio de desarrollo de A. tuberculatus al momento de la aplicación del herbicida influyó en el control. Mesotrione aplicado solo a 105 g ha−1 o combinado con atrazine a 560 g ai ha−1 brindó un control significativamente mayor (≥66%) cuando se aplicó a plantas pequeñas de A. tuberculatus (2 a 5 cm de altura), al compararse con aplicaciones hechas a plantas de 5 a 10 ó 10 a 15 cm de altura. Glyphosate, glufosinate, fomesafen, lactofen, o acifluorfen brindaron mayor control de A. tuberculatus (≥68%) 7 y 14 DAT que mesotrione, dicamba, o 2,4-D. El control de esta población con atrazine, chlorimuron, e imazethapyr no excedió 12%. Los resultados de un experimento de invernadero con plantas de A. tuberculatus provenientes de semillas colectadas en campo, fueron similares a los datos de campo, y confirman que la población del condado McLean fue pobremente controlada con herbicidas inhibidores de HPPD, fotosistema II, y acetolactate synthase.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

Footnotes

Associate Editor for this paper: Bradley Hanson, University of California, Davis.

References

Literature Cited

Allen, J, Hinz, J, Essner, R, Fischer, J, Van Wert, S (2011) Introducing a new soybean event with glyphosate and HPPD tolerance. Proc North Central Weed Sci Soc 66:144 Google Scholar
Bell, MS, Hager, AG, Tranel, PJ (2013) Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460468 Google Scholar
Buhler, DD, Hartzler, RG (2001) Emergence and persistence of seed of velvetleaf, common waterhemp, woolly cupgrass, and giant foxtail. Weed Sci 49:230235 Google Scholar
Burnside, OC, Wilson, RG, Weisberg, S, Hubbard, KG (1996) Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci 44:7486 Google Scholar
Foes, MJ, Liu, LX, Tranel, PJ, Wax, LM, Stoller, EW (1998) A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci 46:514520 Google Scholar
Guo, J, Riggins, CW, Hausman, NE, Hager, AG, Riechers, DE, Davis, AS, Tranel, PJ (2015) Non-target site resistance to ALS inhibitors in waterhemp (Amaranthus tuberculatus). Weed Sci 63:399407 Google Scholar
Hager, AG, Wax, LM, Bollero, GA, Stoller, EW (2003) Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol 17:1420 Google Scholar
Hager, AG, Wax, LM, Simmons, FW, Stoller, EW (1997) Waterhemp management in agronomic crops. Univ Ill Bull 855:12 Google Scholar
Hager, AG, Wax, LM, Stoller, EW, Bollero, GA (2002) Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci 50:607610 Google Scholar
Hartzler, RG, Battles, B, Nordby, D (2004) Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci 52:242245 Google Scholar
Hartzler, RG, Buhler, DD, Stoltenberg, DE (1999) Emergence characteristics of four annual weed species. Weed Sci 47:578584 Google Scholar
Hausman, NE, Singh, S, Tranel, PJ, Riechers, DE, Kaundun, SS, Polge, ND, Thomas, DA, Hager, AG (2011) Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manag Sci 67:258261 Google Scholar
Hausman, NE, Tranel, PJ, Riechers, DE, Maxwell, DJ, Gonzini, LC, Hager, AG (2013) Responses of an HPPD inhibitor-resistant waterhemp (Amaranthus tuberculatus) population to soil-residual herbicides. Weed Technol 27:704711 Google Scholar
Heap, IM (2013) International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed April 10, 2013Google Scholar
Hess, DF (2000) Light-dependent herbicides: an overview. Weed Sci 48:160170 Google Scholar
Hoss, NE, Al-Khatib, K, Peterson, DE, Loughin, TM (2003) Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci 51:110117 Google Scholar
Johnson, BC, Young, BG, Matthews, JL (2002) Effect of postemergence application rate and timing of mesotrione on corn (Zea mays) response and weed control. Weed Technol 16:414420 Google Scholar
Lally, NG, Thompson, CR, Peterson, D (2010) Palmer amaranth differential response to pyrasulfotole & bromoxynil. Proc North Central Weed Sci Soc 65:68 Google Scholar
Ma, R, Kaundun, SS, Tranel, PJ, Riggins, CW, McGinness, DL, Hager, AG, Hawkes, T, McIndoe, E, Riechers, DE (2013) Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiol 163:363377 Google Scholar
Matsumoto, H (2002) Inhibitors of Protoporphyrinogen oxidase: a brief update. Pages 151161 in Boger, P, Wakabayashi, K, Hirai, K eds. Herbicide Classes in Development. New York, NY: Springer-Verlag Google Scholar
McMullan, PM, Green, JM (2011) Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technol 25:514518 Google Scholar
Patzoldt, WL, Tranel, PJ, Hager, AG (2002) Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Prot 21:707712 Google Scholar
Patzoldt, WL, Tranel, PJ, Hager, AG (2005) A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci 53:3036 Google Scholar
Sauer, J (1955) Revision of the dioecious amaranths . Madrono 13:546 Google Scholar
Sauer, J (1957) Recent migration and evolution of the dioecious Amaranths . Evolution 11:1131 Google Scholar
Saxton, AM (1998) A macro for converting mean separation output to letter groupings in Proc Mixed. Proc. Ann SAS Users Group Int 23:12431246 Google Scholar
Steckel, LE, Sprague, CL (2004) Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci 52:359364 Google Scholar
Steckel, LE, Sprague, CL, Hager, AG, Simmons, FW, Bollero, GA (2003) Effects of shading on common waterhemp (Amaranthus rudis) growth and development. Weed Sci 51:898903 Google Scholar
Tranel, PJ, Riggins, CW, Bell, MS, Hager, AG (2010) Herbicide resistances in Amaranthus tuberculatus: a call for new options. J Agric Food Chem 59:58085812 Google Scholar
Vyn, JD, Swanton, CJ, Weaver, SE, Sikkema, PH (2006) Control of Amaranthus tuberculatus var. rudis (common waterhemp) with pre and postemergence herbicides in Zea mays L. (maize). Crop Prot 25:10511056 Google Scholar
Woodyard, AJ, Bollero, GA, Riechers, DE (2009) Broadleaf weed management in corn utilizing synergistic postemergence herbicide combinations. Weed Technol 23:513518 Google Scholar