Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T22:19:51.984Z Has data issue: false hasContentIssue false

Response of Sweetpotato Cultivars to S-metolachlor Rate and Application Time

Published online by Cambridge University Press:  20 January 2017

Stephen L. Meyers*
Affiliation:
Department of Horticultural Science, N. C. State University, Raleigh, NC 27695
Katherine M. Jennings
Affiliation:
Department of Horticultural Science, N. C. State University, Raleigh, NC 27695
David W. Monks
Affiliation:
Department of Horticultural Science, N. C. State University, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected]

Abstract

Studies were conducted in 2008 and 2009 to determine the effect of S-metolachlor rate and application time on sweetpotato cultivar injury and storage root shape under conditions of excessive moisture at the time of application. S-metolachlor at 1.1, 2.2, or 3.4 kg ai ha−1 was applied immediately after transplanting or 2 wk after transplanting (WATP) to ‘Beauregard’, ‘Covington’, ‘DM02-180’, ‘Hatteras’, and ‘Murasaki-29’ sweetpotato. One and three d after S-metolachlor application plots received 1.9 cm rainfall or irrigation. S-metolachlor applied immediately after transplanting resulted in increased sweetpotato stunting 4 and 12 WATP, decreased no. 1 and marketable sweetpotato yields, and decreased storage root length to width ratio compared with the nontreated check. Sweetpotato stunting, no. 1 and marketable yields, and storage root length to width ratio in treatments receiving S-metolachlor 2 WATP were similar to the nontreated check. In 2008, Covington and Hattaras stunting 12 WATP was greater at 2.2 and 3.4 kg ha−1 (11 to 16%) than 1.1 kg ha−1 (1 to 2%). In 2009, S-metolachlor at 3.4 kg ha−1 was more injurious 4 WATP than 2.2 kg ha−1 and 1.1 kg ha−1. While cultivar by treatment interactions did exist, injury, yield, and storage root length to width ratio trends were similar among all cultivars used in this study.

En 2008 y 2009, se realizaron estudios para determinar el efecto de la dosis de S-metolachlor y el momento de aplicación en el daño y la forma de las raíces de almacenamiento en diferentes cultivares de batata, bajo condiciones de humedad excesiva al momento de la aplicación. El S-metolachlor fue aplicado a 1.1, 2.2 ó 3.4 kg ai ha−1, inmediatamente después del trasplante o 2 semanas después del trasplante (WATP) a los cultivares de batata ‘Beauregard’, ‘Covington’, ‘DM02-180’, ‘Hatteras’ y ‘Murasaki-29’. Uno y tres días después de la aplicación de S-metolachlor, las parcelas recibieron 1.9 cm de lluvia o riego. El S-metolachlor aplicado inmediatamente después del trasplante resultó en un crecimiento limitado 4 y 12 WATP, disminución en el rendimiento de batatas no. 1 y comercializables, y un menor ratio entre el largo y el grosor de la raíz de almacenamiento, comparado con el tratamiento testigo sin aplicación. El crecimiento limitado, los rendimientos no. 1 y comercializable, y el ratio entre largo y grosor de la raíz de almacenamiento en los tratamientos que recibieron S-metolachlor 2 WATP fueron similares al testigo no tratado. En 2008, el crecimiento limitado mostrado por Covington y Hatteras 12 WATP fue mayor a 2.2 y 3.4 kg ha−1 (11 a 16%) que a 1.1 kg ha−1 (1 a 2%). En 2009, el S-metolachlor a 3.4 kg ha−1 fue mucho más dañino 4 WATP que a 2.2 y 1.1 kg ha−1. Aunque existieron interacciones entre cultivares y tratamientos, las tendencias en daño, rendimiento, y el ratio entre largo y grosor de la raíz de almacenamiento fueron similares entre todos los cultivares usados en este estudio.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2004. Dual MAGNUM® herbicide product label. Syngenta Publication No. SCP 816A-L1P 0404. Greensboro, NC Syngenta Crop Protection, Inc. 39 p.Google Scholar
Anonymous, . 2006. Dual MAGNUM® herbicide product label. Syngenta Publication No. NC0816020AA0406. Greensboro, NC Syngenta Crop Protection, Inc. 3 p.Google Scholar
Belehu, T., Hammes, P. S., and Robbertse, P. J. 2004. The origin and structure of adventitious roots in sweet potato (Ipomoea batatas). Aust. J. Bot. 52:551558.Google Scholar
Bollman, S. L. and Sprague, C. L. 2008. Tolerance of 12 sugarbeet varieties to applications of S-metolachlor and dimethenamid-P. Weed Technol. 22:699706.Google Scholar
Bollman, S. L., Sprague, C. L., and Penner, D. 2008. Physiological basis for tolerance of sugarbeet varieties to S-metolachlor and dimethenamid-P. Weed Sci. 56:1825.Google Scholar
Clark, C. A., and Moyer, J. W., 1988. eds. Compendium of Sweet Potato Diseases. St. Paul, MN American Phytopathological Society. Pp. 5759.Google Scholar
Cottingham, C. K., Hatzios, K. K., and Meredith, S. A. 1993. Comparative responses of selected corn (Zea mays) hybrids to EPTC and metolachlor. Weed Res. 33:161170.Google Scholar
Firon, N., LaBonte, D., Villordon, A., McGregor, C., Kfir, Y., and Pressman, E. 2009. Botany and physiology: storage root formation and development. Pages 1326. In Loebenstein, G. and Thottappilly, G., eds. The Sweetpotato. New York Springer.Google Scholar
Harrison, H. F., Jones, J. A., and Dukes, P. D. 1985. Differential response of six sweet potato (Ipomoea batatas) cultivars to metribuzin. Weed Sci. 33:730733.Google Scholar
Harrison, H. F., Jones, J. A., and Dukes, P. D. 1987. Heritability of metribuzin tolerance in sweet potatoes (Ipomoea batatas). Weed Sci. 35:715719.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth and analysis of four Amaranthus species. Weed Sci. 48:347355.Google Scholar
La Bonte, D. R., Villordon, A. Q., Clark, C. A., Wilson, P. W., and Stoddard, C. S. 2008. Murasaki-29 sweetpotato. HortSci. 43:18951896.Google Scholar
Keller, K. E. and Weber, J. B. 1995. Mobility and dissipation of 14C-labeled atrazine, metolachlor, and primsulfuron in undisturbed field lysimeters of a coastal plain soil. J. Agric. Food Chem. 43:10767086.Google Scholar
Meyers, S. L., Jennings, K. M., Schultheis, J. R., and Monks, D. W. 2010a. Interference of Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Sci. 58:119203.Google Scholar
Meyers, S. L., Jennings, K. M., Schultheis, J. R., and Monks, D. W. 2010b. Evaluation of flumioxazin and S-metolachlor rate and timing for Palmer amaranth (Amaranthus palmeri) control in sweetpotato. Weed Technol. 24:495503.Google Scholar
Miller, D., Smith, T., Arnold, T., Lee, D., and Mathews, M. 2011. Effect of simulated rainfall amount and application timing on sweetpotato tolerance to Dual Magnum. Proc. South. Weed Sci. Soc. 64:301.Google Scholar
Monks, D. W. and Oliver, L. R. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci. 36:770774.Google Scholar
Monks, D. W., Mitchem, W. E., Mills, R. J., and Greeson, C. V. 1998. Response of nutsedge and sweetpotato to EPTC and metolachlor. Proc. South. Weed Sci. Soc. 51:91.Google Scholar
Motsenbocker, C. E. and Monaco, T. J. 1991. Sweet potatoes (Ipomoea batatas) differ in response to bentazon. Weed Technol. 5:345350.Google Scholar
Motsenbacker, C. E. and Monaco, T. J. 1993. Differential tolerance of sweet potato (Ipomaea batatas) clones to metribuzin. Weed Technol. 7:349354.Google Scholar
[NCDA and CS] North Carolina Department of Agriculture & Consumer Services. 2009. North Carolina Agricultural Statistics. Raleigh, NC N.C. Department of Agriculture. 142 p.Google Scholar
Norsworthy, J. K., Oliveira, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol. 22:296302.Google Scholar
Osborne, B. T., Shaw, D. R., and Ratliff, R. L. 1995a. Response of selected soybean (Glycine max) cultivars to dimethenamid and metolachlor in hydroponic conditions. Weed Technol. 9:178181.Google Scholar
Osborne, B. T., Shaw, D. R., and Ratliff, R. L. 1995b. Soybean (Glycine max) cultivar tolerance to SAN 582H and metolachlor as influenced by soil moisture. Weed Sci. 43:288292.Google Scholar
Porter, W. C. 1994. Sedge (Cyperus ssp.) control in sweet potatoes. Proc. South. Weed Sci. Soc. 47:79.Google Scholar
Porter, W. C. 1995. Response of sweetpotato cultivars to metolachlor. Hort Sci. 30:441.Google Scholar
Rolston, L. H., Clark, C. A., Cannon, J. M., Randle, W. M., Riley, E. G., Wilson, P. W., and Robbins, M. L. 1987. Beauregard sweet potato. HortSci. 22:13381339.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersieck, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51:329333.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Champaign, IL Weed Science Society of America. Pp. 275278.Google Scholar
[USDA] U.S. Department of Agriculture. 2005. United States Standards for Grades of Sweet Potatoes. Washington, DC U.S. Department of Agriculture. 4 p.Google Scholar
[USDA-NASS] U.S. Department of Agriculture : National Agricultural Statistics Service. 2009. 2007 Census of Agriculture. Washington D.C. U.S. Department of Agriculture. 739 p.Google Scholar
Villordon, A. Q., La Bonte, D. R., Firon, N., Kfir, Y., Pressman, E., and Schwartz, A. 2009. Characterization of adventitious root development in sweetpotato. HortSci. 44:651655.Google Scholar
Webster, T. M. 2010. Weed survey-southern states. Proc. South. Weed Sci. Soc. 63:256.Google Scholar
Wilson, L. A. and Lowe, S. B. 1973. The anatomy of the root system in West Indian sweet potato (Ipomoea Batatas (L.) Lam.) cultivars. Ann. Bot. 37:633643.Google Scholar
Yencho, G. C., Pecota, K. V., Schultheis, J. R., VanEsbroeck, Z. P., Holmes, G. J., Little, B. E., Thornton, A. C., and Truong, V. D. 2008. ‘Covington’ sweetpotato. Hort. Sci. 43:19111914.Google Scholar