Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T12:06:27.391Z Has data issue: false hasContentIssue false

Response of Rice to Drift Rates of Glyphosate Applied at Low Carrier Volumes

Published online by Cambridge University Press:  20 January 2017

Justin B. Hensley
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803
Eric P. Webster*
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803
David C. Blouin
Affiliation:
Department of Experimental Statistics, Louisiana State University, 45 Agricultural Administration Building, Baton Rouge, LA 70803
Dustin L. Harrell
Affiliation:
Louisiana State University Agricultural Center Rice Research Station, 1373 Caffey Road, Rayne, LA 70578
Jason A. Bond
Affiliation:
Delta Research and Extension Center, Mississippi Agricultural and Forestry Experiment Station, Stoneville, MS
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted near Crowley, LA in 2005 through 2007 to evaluate the effects of simulated herbicide drift on ‘Cocodrie' rice. Each application was made with the spray volume varying proportionally to herbicide dosage based on a constant spray volume of 234 L ha−1 and a glyphosate rate of 863 g ae ha−1. The 6.3%, 54–g ha−1, herbicide rate was applied at a spray volume of 15 L ha−1, and the 12.5%, 108–g ha−1, herbicide rate was applied at a spray volume of 29 L ha−1. Compared with the nontreated, glyphosate applied at one tiller, panicle differentiation (PD), and boot resulted in increased crop injury. The greatest injury was observed on rice treated at the one-tiller timing. Applications of glyphosate at one tiller, PD, and boot reduced plant height at harvest and primary and total crop yield. Rice treated at primary crop maturity was not affected by glyphosate applications.

Se realizaron estudios de campo cerca de Crowley, LA desde 2005 hasta 2007 para evaluar los efectos de la deriva simulada de herbicidas sobre arroz 'Cocodrie'. Cada aplicación fue hecha con un volumen de aspersión que varió proporcionalmente a la dosis del herbicida con base en un volumen constante de aspersión de 234 L ha−1 y una dosis de glyphosate de 863 g ae ha−1. La dosis de 6.3%, 54 g ha−1, fue aplicada a un volumen de aspersión de 15 L ha−1, y la de 12,5%, 108 g ha−1, fue aplicada a un volumen de aspersión de 29 L ha−1. Al compararse con el testigo no-tratado, glyphosate aplicado en los estados de un hijuelo, diferenciación de panícula (PD), y engrosamiento de la vaina de la hoja bandera, resultó en un mayor daño al cultivo. El mayor daño fue observado en arroz tratado en el estado de un hijuelo. Las aplicaciones de glyphosate en los estados de un hijuelo, PD y engrosamiento de la vaina de la hoja bandera, redujeron la altura de la planta al momento de la cosecha y el rendimiento primario y total del cultivo. El arroz tratado al momento de la madurez primaria del cultivo no fue afectado por las aplicaciones de glyphosate.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrhein, N., Deus, B., Gehrke, P., and Steinrucken, H. C. 1980. The site of inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66:830834.Google Scholar
Amrhein, N., Johanning, D., Schab, J., and Schulz, A. 1983. Biochemical basis for glyphosate-tolerance in a bacterium and a plant tissue culture. FEBS Lett. 157:191196.Google Scholar
Banks, P. A. and Schroeder, J. 2002. Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol. 16:833837.Google Scholar
Blouin, D. C., Webster, E. P., and Bond, J. A. 2011. On the analysis of combined experiments. Weed Technol. 25:165169.Google Scholar
Boocock, M. A. and Coggins, J. R. 1983. Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett. 154:127133.CrossRefGoogle ScholarPubMed
Crabbe, R. S., McCooeye, M., and Mickle, R. E. 1994. The influence of atmospheric stability on wind drift from ultra-low-volume aerial forest spray applications. J. Appl. Meteorol. 33:500507.Google Scholar
Davis, B., Scott, R. C., Norsworthy, J. K., and Gbur, E. 2011. Response of Rice (Oryza sativa) to low rates of glyphosate and glufosinate. Weed Technol. 25:198203.Google Scholar
Ellis, J. M., Griffin, J. L., and Jones, C. A. 2002. Effects of carrier volume on corn (Zea mays) and soybean (Glycine max) response to simulated drift of glyphosate and glufosinate. Weed Technol. 16:587592.Google Scholar
Ellis, J. M., Griffin, J. L., Linscombe, S. D., and Webster, E. P. 2003. Rice (Oryza sativa) and corn (Zea mays) response to simulated drift of glyphosate and glufosinate. Weed Technol. 17:452460.Google Scholar
Everitt, J. D. and Keeling, J. W. 2009. Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol. 23:503506.Google Scholar
Groth, D., Hollier, C., and Rush, C. 2009. Disease management. Pages 7292 in Saichuk, J., ed. Louisiana Rice Production Handbook. Baton Rouge, LA Louisiana State University AgCenter Publication 2321.Google Scholar
Hensley, J. B., Webster, E. P., Blouin, D. C., Harrell, D. L., and Bond, J. A. 2012. Impact of drift rates of imazethapyr and low carrier volume on non-Clearfield rice. Weed Technol. 26:236242.Google Scholar
Herrmann, K. M. and Weaver, L. M. 1999. The shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:473503.Google Scholar
Hollander-Czytko, H. and Amrhein, N. 1987. 5-enolpyruvylshikimate 3-phosphate synthase, the target enzyme of the herbicide glyphosate, is synthesized as a precursor in a higher plant. Plant Physiol. 83:229231.CrossRefGoogle Scholar
Jakeman, D. L., Mitchell, D. J., Shuttleworth, W. A., and Evans, J. N. S. 1998. On the mechanism of 5-enolpyruvylshikimate-3-phosphate synthase. Biochemistry. 37:1201212019.Google Scholar
Koger, C. H., Shaner, D. L., Krutz, L. J., Walker, T. W., Buehring, N., Henry, W. B., Thomas, W. E., and Wilcut, J. W. 2005. Rice (Oryza sativa) response to drift rates of glyphosate. Pest Manag. Sci. 61:11611167.Google Scholar
Kurtz, M. E. and Street, J. E. 2003. Response of rice (Oryza sativa) to glyphosate applied to simulate drift. Weed Technol. 17:234238.Google Scholar
Marple, M. E., Al-Khatib, K., and Peterson, D. E. 2008. Cotton injury and yield as affected by simulated drift of 2,4-D and dicamba. Weed Technol. 22:609614.Google Scholar
Martin, R. A. and Edgington, L. V. 1981. Comparative systemic translocation of several xenobiotics and sucrose. Pestic. Biochem. Physiol. 16:8796.Google Scholar
[NASS] National Agricultural Statistics Service. 2011a. Crop Production 2010 Summary. http://usda01.library.cornell.edu/usda/nass/Acre//2010s/2010/. Acre-06-30-2010.pdf. Accessed: April 10, 2012.Google Scholar
[NASS] National Agricultural Statistics Service. 2011b. Crop Value 2010 Summary. http://usda01.library.cornell.edu/usda/nass/CropValuSu/2010s/2011/CropValuSu-02-16-2011.pdf. Accessed: April 10, 2012.Google Scholar
[NASS] National Agricultural Statistics Service. 2011c. Louisiana Parish Estimates. http://www.nass.usda.gov/Statistics_by_State/Louisiana/Publications/Parish_Estimates/Rice10.pdf. Accessed: April 10, 2012.Google Scholar
Ramsdale, B. K., Messersmith, C. G., and Nalewaja, J. D. 2003. Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technol. 17:589598.Google Scholar
Roider, C. A., Griffin, J. L., Harrison, S. A., and Jones, C. A. 2008. Carrier volume affects wheat response to simulated glyphosate drift. Weed Technol. 22:453458.Google Scholar
[SAS] Statistical Analysis Systems. 2003. Version 9.1. Cary, NC Statistical Analysis Systems Institute.Google Scholar
Sawchuck, J. W., Van Acker, R. C., and Friesen, L. R. 2006. Influence of a range of dosages of MCPA, glyphosate, and thifensulfuron:tribenuron (2:1) on conventional canola (Brassica napus) and white bean (Phaseolus vulgaris) growth and yield. Weed Technol. 20:184197.Google Scholar
Schonbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N. S., and Kabsch, W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. U. S. A. 88:13761380.Google Scholar
Senseman, S.A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. Pp. 243246.Google Scholar
Shaner, D. L. 2000. The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag. Sci. 56:320326.Google Scholar
Thistle, H. W. 2004. Meteorological concepts in the drift of pesticides. Pages 156162 in Proceedings of International Conference on Pesticide Application for Drift Management, October 27 to 29, 2004, Waikoloa, Hawaii.Google Scholar