Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T05:29:27.502Z Has data issue: false hasContentIssue false

Response of Ragweed Parthenium (Parthenium hysterophorus) to Saflufenacil and Glyphosate

Published online by Cambridge University Press:  20 January 2017

Dennis C. Odero*
Affiliation:
University of Florida Everglades Research and Education Center, 3200 E. Palm Beach Road, Belle Glade, FL 33430
*
Corresponding author's E-mail: [email protected].

Abstract

Field and greenhouse studies were conducted in Belle Glade, FL, in 2010 and 2011 to evaluate saflufenacil and glyphosate efficacy on POST burndown of ragweed parthenium. Log-logistic models were used to determine the herbicide dose required to produce 90% control (ED90). The ED90 for rosette ragweed parthenium control in the greenhouse was saflufenacil at 8.0 g ai ha−1 at 14 d after treatment. The rate required to cause 90% growth reduction of rosette ragweed parthenium at 14 d after treatment was 8.9 g ha−1 of saflufenacil. The probability of rosette ragweed parthenium survival decreased with increasing rates of saflufenacil. The ED90 value for bolted ragweed parthenium control in the field was 5.7 g ha−1 of saflufenacil at 21 d after treatment. Ragweed parthenium had no response to glyphosate either in the field or in the greenhouse studies. This demonstrates that saflufenacil can be used as a POST burndown of ragweed parthenium populations that have no response to glyphosate.

En 2010 y 2011 se realizaron estudios de campo e invernadero en Belle Glade, FL para evaluar la eficacia de saflufenacil y glyphosate en la quema química POST de Parthenium hysterophorus. Se usaron modelos log-logísticos para determinar la dosis de herbicida requerida para producir 90% de control (ED90). El ED90 para control P. hysterophorus en roseta en el invernadero fue 8.0 g ia ha−1 de saflufenacil a los 14 días después del tratamiento. La dosis requerida para causar 90% de reducción de crecimiento de P. hysterophorus en roseta a los 14 días después del tratamiento fue 8.9 g ha−1 de saflufenacil. La probabilidad de la supervivencia P. hysterophorus en roseta disminuyó con el incremento de las dosis de saflufenacil. El valor ED90 para el control de P. hysterophorus con tallo erecto en el campo fue 5.7 g ha−1 de saflufenacil a los 21 días después del tratamiento. El P. hysterophorus no tuvo respuesta al glyphosate ni en los estudios de campo ni en los de invernadero. Esto demuestra que el saflufenacil puede ser utilizado para la quema química POST de las poblaciones de P. hysterophorus que no tienen respuesta al glyphosate.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2012. Sharpen® herbicide product label. Florham Park, NJ BASF Corporation. BASF Publication No. 2011-04-322-0113. http://agproducts.basf.us/products/kixor-herbicide-msds.html. Accessed January 7, 2012.Google Scholar
Batish, D. R., Singh, H. P., Kohli, R. K., Saxena, D. B., and Kaur, S. 2002. Allelopathic effects of parthenin against two weedy species, Avena fatua and Bidens pilosa . Environ. Exp. Bot. 47:149155.Google Scholar
Belz, R. G., Reinhardt, C. F., Foxcroft, L. C., and Hurle, K. 2007. Residue allelopathy in Parthenium hysterophorus L.—does parthenin play a leading role? Crop Prot. 26:237245.Google Scholar
Frihauf, J. C., Stahlman, P. W., and Geier, P. W. 2010a. Winter wheat and weed response to postemergence saflufenacil alone and in mixtures. Weed Technol. 24:262268.Google Scholar
Frihauf, J. C., Stahlman, P. W., Geier, P. W., and Peterson, D. E. 2010b. Winter annual broadleaf weeds and winter wheat response to postemergence application of two saflufenacil formulations. Weed Technol. 24:416424.Google Scholar
Geier, P. W., Stahlman, P. W., and Charvat, L. D. 2009. Dose responses of five broadleaf weeds to saflufenacil. Weed Technol. 23:313316.Google Scholar
Grossman, K., Niggeweg, R., Christiansen, N., Looser, R., and Ehrhardt, T. 2010. The herbicide saflufenacil (Kixor®) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci. 58:19.Google Scholar
Joshi, S. 1991. Biocontrol of Parthenium hysterophorus L. Crop Prot. 10:429431.Google Scholar
Kanchan, S. D. and Jayachandra, . 1979. Allelopathic effects of Parthenium hysterophorus L., I: exudation of inhibitors through roots. Plant Soil 53:2735.Google Scholar
Kohli, R. K. and Batish, D. R. 1994. Exhibition of allelopathy by Parthenium hysterophorus L. in agroecosystems. Trop. Ecol. 35:295307.Google Scholar
Kohli, R. K., Batish, D. R., Singh, H. P., and Dogra, K. S. 2006. Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biol. Invasions 8:15011510.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Charvat, L. D. 2009. Adjuvants influenced saflufenacil efficacy on fall-emerging weeds. Weed Technol. 23:340345.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Charvat, L. D. 2010. Tolerance of winter wheat (Triticum aestivum L.) to pre-emergence and post-emergence application of saflufenacil. Crop Prot. 29:148152.Google Scholar
Kniss, A. R. and Lyon, D. J. 2011. Winter wheat response to preplant applications of aminocyclopyrachlor. Weed Technol. 25:5157.Google Scholar
Liebl, R., Walter, H., Bowe, S. J., Holt, T. J., and Westberg, D. E. 2008. BAS 800H: a new herbicide for preplant burndown and preemergence dicot weed control. Weed Sci. Soc. Am. 48:120. [Abstract].Google Scholar
Murphy, D. M. 2001. The role of pollen allelopathy in weed ecology. Weed Technol. 15:867872.Google Scholar
Navie, S. C., McFadyen, R. E. C., Panetta, F. D., and Adkins, S. W. 1996. The biology of Australian weeds 27. Parthenium hysterophorus L. Plant Prot. Q. 11:7688.Google Scholar
Navie, S. C., Panetta, F. D., McFadyen, R. E., and Adkins, S. W. 1998. Behaviour of buried and surface-sown seeds of Parthenium hysterophorus . Weed Res. 38:335341.Google Scholar
Navie, S. C., Panetta, F. D., McFadyen, R. E., and Adkins, S. W. 2004. Germinable soil seedbanks of central Queensland rangelands invaded by the exotic weed Parthenium hysterophorus L. Weed Biol. Manag. 4:154167.Google Scholar
Pandey, H. N. and Dubey, S. K. 1988. Achene germination of Parthenium hysterophorus L.: effects of light, temperature, provenance and achene size. Weed Res. 28:185190.Google Scholar
Pinheiro, J. C. and Bates, D. M. 2000. Mixed-Effects Models in S and S-Plus. New York Springer-Verlag. 528 p.Google Scholar
R Development Core Team. 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna: Austria. ISBN 3-900051-07-9, URL: http://www.R-project.org.Google Scholar
Reddy, K. N., Bryson, C. T., and Burke, I. C. 2007. Ragweed parthenium (Parthenium Hysterophorus) control with preemergence and postemergence herbicides. Weed Technol. 21:982986.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Softw. 12:122.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Feurst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.Google Scholar
Singh, S., Yadav, A., Balyan, R. S., Malik, R. K., and Singh, M. 2004. Control of ragweed parthenium (Parthenium hysterophorus) and associated weeds. Weed Technol. 18:658664.Google Scholar
Swaminathan, C., Vinaya Rai, R. S., and Sureshi, K. K. 1990. Allelopathic effects of Parthenium hysterophorus on germination and seedling growth of a few multi-purpose trees and arable crops. Int. Tree Crops J. 6:143150.Google Scholar
Tamado, T., Ohlander, L., and Milberg, P. 2002a. Interference by the weed Parthenium hysterophorus L. with grain sorghum: influence of weed density and duration of competition. Int. J. Pest Manag. 48:183188.Google Scholar
Tamado, T., Schütz, W., and Milberg, P. 2002b. Germination ecology of the weed Parthenium hysterophorus in eastern Ethiopia. Ann. Appl. Biol. 140:263270.Google Scholar
Tamado, T. and Milberg, P. 2004. Control of parthenium (Parthenium hysterophorus) in grain sorghum (Sorghum bicolor) in the smallholder farming system in eastern Ethiopia. Weed Technol. 18:100105.Google Scholar
[USDA] U.S. Department of Agriculture. 2011. Plants Profile: Parthenium hysterophorus L. http://plants.usda.gov/java/profile?symbol=PAHY. Accessed: June 28, 2011.Google Scholar
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. 4th ed. New York Springer. 495 p.Google Scholar
Waggoner, B. S., Mueller, T. C., Bond, J. A., and Steckel, L. E. 2011. Control of glyphosate-resistant horseweed (Conyza canadensis) with saflufenacil tank mixtures in no-till cotton. Weed Technol. 25:310315.Google Scholar