Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T23:48:37.645Z Has data issue: false hasContentIssue false

Response of Palmer Amaranth (Amaranthus palmeri) Accessions to Glyphosate, Fomesafen, and Pyrithiobac

Published online by Cambridge University Press:  20 January 2017

Jason A. Bond*
Affiliation:
Department of Crop, Soil and Environmental Sciences, University of Arkansas, 115 Plant Science, Fayetteville, AR 72704
Lawrence R. Oliver
Affiliation:
Department of Crop, Soil and Environmental Sciences, University of Arkansas, 115 Plant Science, Fayetteville, AR 72704
Daniel O. Stephenson IV
Affiliation:
Department of Crop, Soil and Environmental Sciences, University of Arkansas, 115 Plant Science, Fayetteville, AR 72704
*
Corresponding author's E-mail: [email protected].

Abstract

Field studies were conducted at Fayetteville, Arkansas, to determine whether 47 Palmer amaranth accessions from different areas of the southern United States varied in response to postemergence applications of the registered rates of the isopropylamine salt of glyphosate (840 g ae/ha), fomesafen (420 g ai/ha), and pyrithiobac (70 g ai/ha). Glyphosate controlled all Palmer amaranth accessions at least 99% 21 d after treatment (DAT). Palmer amaranth control with fomesafen was equivalent for all accessions and at least 96% 21 DAT. Percent dry weight reductions were at least 92 and 94% for glyphosate and fomesafen, respectively. Palmer amaranth control with pyrithiobac was variable and ranged from 20 to 94% 21 DAT, but differences could not be attributed to accession origin. Herbicides with alternate modes of action from pyrithiobac should be utilized for Palmer amaranth control in regions where pyrithiobac has been used continuously.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (Amaranthus palmeri), and common waterhemp (Amaranthus rudis) in soybean. Weed Sci. 51:3743.CrossRefGoogle Scholar
Bond, J. A. and Oliver, L. R. 2006. Comparative growth of Palmer amaranth (Amaranthus palmeri) accessions. Weed Sci. 54:121126.Google Scholar
Bond, J. A., Walker, T. W., Bollich, P. K., Koger, C. H., and Gerard, P. 2005. Seeding rates for stale seedbed rice production in the midsouthern United States. Agron J. 97:15601563.Google Scholar
Burgos, N. R., Kuk, Y., and Talbert, R. E. 2001. Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and Amaranthus hybridus to ALS-inhibiting herbicides. Pest Manage. Sci. 57:449457.Google Scholar
Cahoon, J., Ferguson, J., Edwards, D., and Tucker, P. 1990. A microcomputer-based irrigation scheduler for the humid mid-south region. Appl. Eng. Agric. 6:289295.CrossRefGoogle Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences in combined analyses of experiments with two- or three-factor treatment designs. Agron. J. 81:665672.Google Scholar
Culpepper, A. S. and York, A. C. 2000. Weed management in ultranarrow-row cotton. Weed Technol. 14:1929.Google Scholar
Dotray, P. A., Keeling, J. W., Henniger, C. G., and Abernathy, J. R. 1996. Palmer amaranth (Amaranthus palmeri) and devil's-claw (Proboscidea louisianica) control in cotton (Gossypium hirsutum) with pyrithiobac. Weed Technol. 10:712.CrossRefGoogle Scholar
Fernald, M. L. 1950. Gray's Manual of Botany. 8th ed. New York American Book Co. 602.Google Scholar
Gaeddert, J. W., Peterson, D. E., and Horak, M. J. 1997. Control and cross-resistance of an acetolactate synthase inhibitor-resistant Palmer amaranth (Amaranthus palmeri) biotype. Weed Technol. 11:132137.Google Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol. 6:587591.Google Scholar
Gossett, B. J. and Toler, J. E. 1999. Differential control of Palmer amaranth (Amaranthus palmeri) and smooth pigweed (Amaranthus hybridus) by postemergence herbicides in soybean (Glycine max). Weed Technol. 13:165168.Google Scholar
Grichar, W. J. 1997. Control of Palmer amaranth (Amaranthus palmeri) in peanut (Arachis hypogaea) with postemergence herbicides. Weed Technol. 11:739743.Google Scholar
Hager, A. G., Wax, L. M., Bollero, G. A., and Stoller, E. W. 2003. Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol. 17:1420.Google Scholar
Heap, I. 2003. The International Survey of Herbicide Resistant Weeds. Web page: http://www.weedscience.com. Accessed March 1, 2004.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48:347355.CrossRefGoogle Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.Google Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35:199204.CrossRefGoogle Scholar
Keeling, J. W., Siders, K. T., and Abernathy, J. R. 1991. Palmer amaranth (Amaranthus palmeri) control in a conservation tillage system for cotton (Gossypium hirsutum). Weed Technol. 5:137141.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybean (Glycine max). Weed Sci. 42:523527.Google Scholar
Li, J., Smeda, R. J., and Wait, J. D. 2004. Population differences in waterhemp treated with glyphosate and lactofen. Weed Sci. Soc. Am. Abstr. 44:53.Google Scholar
Light, G. G., Dotray, P. A., and Mahan, J. R. 1999. Thermal dependence of pyrithiobac efficacy in Amaranthus palmeri . Weed Sci. 47:644650.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.Google Scholar
Mayo, C. M., Horak, M. J., Peterson, D. E., and Boyer, J. E. 1995. Differential control of four Amaranthus species by six postemergence herbicides in soybean (Glycine max). Weed Technol. 9:141147.CrossRefGoogle Scholar
Menges, R. M. 1987. Allelopathic effects of Palmer amaranth (Amaranthus palmeri) and other plant residues in soil. Weed Sci. 35:339347.Google Scholar
Menges, R. M. 1988. Allelopathic effects of Palmer amaranth (Amaranthus palmeri) on seedling growth. Weed Sci. 36:325328.CrossRefGoogle Scholar
Monks, D. W. and Oliver, L. R. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci. 36:770774.Google Scholar
Moore, J. W., Murray, D. S., and Westerman, R. B. 2004. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield of grain sorghum (Sorghum bicolor). Weed Technol. 18:2329.Google Scholar
Morgan, G. D., Bauman, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.Google Scholar
[NASS] National Agricultural Statistics Service 2001. Agricultural Chemical Use Database:. Web page: http://www.pestmanagement.info/nass/app_map.cfm. Accessed: March 2, 2004.Google Scholar
[NASS] National Agricultural Statistics Service 2003. Agricultural Statistics Database—Crops County and District Data:. Web page: http://www.nass.usda.gov:81/ipedb/ Accessed: March 3, 2004.Google Scholar
Ottis, B. V., O'Barr, J. H., Mccauley, G. N., and Chandler, J. M. 2004. Imazethapyr is safe and effective for imidazolinone-tolerant rice grown on coarse-textured soils. Weed Technol. 18:10961100.Google Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2002. Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Prot. 21:707712.Google Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.Google Scholar
Scott, G. H., Askew, S. D., and Wilcut, J. W. 2002. Glyphosate systems for weed control in glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technol. 16:191198.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersick, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51:329333.Google Scholar
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 51:145150.Google Scholar
Smith, D. T., Baker, R. V., and Steele, G. L. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol. 14:122126.Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci. 45:192197.Google Scholar
Stephenson, D. O. IV, Bond, J. A., Walker, E. R., Bararpour, M. T., and Oliver, L. R. 2004. Evaluation of mesotrione in Mississippi delta corn production. Weed Technol. 18:11111116.Google Scholar
Steyermark, J. A. 1963. Flora of Missouri. Ames, IA Iowa State University Press. 622.Google Scholar
Sweat, J. K., Horak, M. J., Peterson, D. E., Lloyd, R. W., and Boyer, J. E. 1998. Herbicide efficacy on four Amaranthus species in soybean (Glycine max). Weed Technol. 12:315321.Google Scholar
Webster, T. M. 2000. Weed survey—grass crops subsection. Proc. South. Weed Sci. Soc. 53:247264.Google Scholar
Webster, T. M. 2001. Weed survey—broadleaf crops subsection. Proc. South. Weed Sci. Soc. 54:244259.Google Scholar
Webster, T. M. 2002. Weed survey—vegetable, fruit, and nut crops subsection. Proc. South. Weed Sci. Soc. 55:237258.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States from 1974 to 1995. Weed Technol. 11:308317.Google Scholar
Wichert, R. A., Bozsa, R., Talbert, R. E., and Oliver, L. R. 1992. Temperature and relative humidity effects on diphenylether herbicides. Weed Technol. 6:1924.CrossRefGoogle Scholar
Zhang, W., Webster, E. P., and Leon, C. T. 2005. Response of rice cultivars to V-10029. Weed Technol. 19:307311.Google Scholar