Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T17:58:27.490Z Has data issue: false hasContentIssue false

Response of Giant Reed (Arundo donax) to Asulam and Trifloxysulfuron

Published online by Cambridge University Press:  20 January 2017

Dennis C. Odero*
Affiliation:
University of Florida Everglades Research and Education Center, 3200 E Palm Beach Road, Belle Glade, FL 33430
Robert A. Gilbert
Affiliation:
University of Florida Everglades Research and Education Center, 3200 E Palm Beach Road, Belle Glade, FL 33430
*
Corresponding author's Email: [email protected]

Abstract

Giant reed has been proposed as a bioenergy crop in the sugarcane production region of south Florida, where it has a high invasive potential. In an effort to limit future invasion of giant reed escapes in sugarcane, currently labeled sugarcane herbicides asulam and trifloxysulfuron were evaluated for its management. Greenhouse and field dose–response studies were conducted at the Everglades Research and Education Center in Belle Glade, FL, between 2010 and 2011. Herbicides were applied at rates ranging from 0.46 to 7.4 kg ha−1 asulam and 2 to 32 g ha−1 trifloxysulfuron, which represent 0.125× to 2× sugarcane labeled use rates, respectively. In the greenhouse, asulam and trifloxysulfuron reduced giant reed relative shoot dry weight by a maximum of 50% at 21 d after treatment (DAT). The probability of giant reed resprouting 35 d following herbicide treatment was greater for trifloxysulfuron when compared with asulam. In the field, it was predicted that a maximum of 69 and 55% giant reed control occurred with application of asulam and trifloxysulfuron, respectively, at 14 DAT. Relative shoot dry weight of giant reed treated with asulam and trifloxysulfuron was reduced by a maximum of 43% at 42 DAT. Application of asulam and trifloxysulfuron did not provide complete control of giant reed at twice the labeled sugarcane use rate, indicating that control of established giant reed in sugarcane with currently available herbicides would not be an option.

Arundo donax ha sido propuesto como un cultivo bio-energético en la región de producción de caña de azúcar al sur de la Florida, donde tiene un alto potencial invasivo. En un esfuerzo por limitar alguna invasión futura de A. donax en la caña de azúcar, se evaluó su manejo con asulam y trifloxysulfuron, los cuales son herbicidas recomendados para este cultivo. Entre 2010 y 2011, se llevaron a cabo estudios de respuesta a dosis en invernadero y campo en el Everglades Research and Education Center en Belle Glade, FL. Los herbicidas fueron aplicados a dosis que variaron de 0.46 a 7.4 kg ha−1 de asulam y de 2 a 32 g ha−1 de trifloxysulfuron, que representan, respectivamente, 0.125× a 2× de las dosis recomendadas para caña de azúcar. En invernadero, asulam y trifloxysulfuron redujeron el peso seco relativo de la parte aérea de A. donax en un máximo de 50% a los 21 días después del tratamiento (DAT). La probabilidad de que A. donax rebrote 35 días después del tratamiento con el herbicida fue mayor para trifloxysulfuron cuando se comparó con asulam. En el campo se predijo que un máximo de 69 a 55% de control de A. donax ocurriría con la aplicación de asulam y trifloxysulfuron, respectivamente, a los 14 DAT. El peso seco relativo de la parte aérea de plantas de A. donax tratadas con asulam y trifloxysulfuron se redujo en un máximo de 43% a los 42 DAT. La aplicación de asulam y trifloxysulfuron no proporcionó un control completo de A. donax al doble de la dosis recomendada para la caña de azúcar, lo que indica que el control de A. donax establecido en caña de azúcar con los herbicidas actualmente disponibles, no sería una opción.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Angelini, L. G., Ceccarini, L., Nassi o Di Nasso, N., and Bonari, E. 2009. Comparison of Arundo donax L. and Miscanthus × giganteus in a long-term field experiment in central Italy: analysis of productive characteristics and energy balance. Biomass Bioenerg. 33:635643.CrossRefGoogle Scholar
Anonymous, . 2011a. Asulox® herbicide. United Phosphorus. http://www.upi-usa.com. Accessed: June 26, 2011.Google Scholar
Anonymous, . 2011b. Envoke® herbicide. Syngenta Crop Protection. http://www.syngentacropprotection.com/prodrender/index.aspx?prodid=904&ProdNM=Envoke. Accessed June 26, 2011.Google Scholar
Askew, S. D. and Wilcut, J. W. 2002. Absorption, translocation, and metabolism of foliar-applied trifloxysulfuron in cotton, peanut, and selected weeds. Weed Sci. 50:293298.CrossRefGoogle Scholar
Barney, J. N. and DiTomaso, J. M. 2008. Nonnative species and bioenergy: are we cultivating the next invader? BioScience 58:6470.Google Scholar
Dalley, C. D. and Richard, E. P. 2008. Control of rhizome johnsongrass (Sorghum halepense) in sugarcane with trifloxysulfuron and asulam. Weed Technol. 22:397401.CrossRefGoogle Scholar
Davis, A. S., Cousens, R. D., Hill, J., Mack, R. N., Simberloff, D., and Raghu, S. 2010. Screening bioenergy feedstock crops to mitigate invasion risk. Front. Ecol. Environ. 8:533539.Google Scholar
Dudley, T. L., Lambert, A. M., Kirk, A., and Tamagawa, Y. 2008. Herbivores of Arundo donax in California. Pages 146152 in Proceedings of the XII International Symposium on Biological Control of Weeds. Wallingford, UK CAB International.Google Scholar
Gordon, D. R., Tancig, K. J., Onderdonk, D. A., and Gantz, C. A. 2011. Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass Bioenerg. 35:7479.Google Scholar
Heaton, E. A., Clifton-Brown, J., Voigt, T. B., Jones, M. B., and Long, S. P. 2004. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig. Adapt. Strat. Glob. Change 9:433451.CrossRefGoogle Scholar
Hossain, A. M., Kuramochi, H., Ishimine, Y., and Akamine, H. 2001. Application timing of asulam for torpedograss (Panicum repens L.) control in sugarcane in Okinawa island. Weed Biol. Manag. 1:108114.Google Scholar
Johnson, M., Dudley, T., and Burns, C. 2006. Seed production in Arundo donax . Cal-IPC News 14:1213.Google Scholar
Khudamrongsawat, J., Tayyar, R., and Holt, J. S. 2004. Genetic diversity of giant reed (Arundo donax) in the Santa Ana River, California. Weed Sci. 52:395405.CrossRefGoogle Scholar
Lambert, A. M., Dudley, T. L., and Saltonstall, K. 2010. Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invas. Plant Sci. Management 3:489494.Google Scholar
LaRossa, R. A. and Schloss, J. V. 1984. The herbicide sulfometuron methyl is bacteriostatic due to inhibition of acetolactate synthase. J. Biol. Chem. 259:87538757.Google Scholar
Lewandowski, I., Scurlock, J. M. O., Lindvall, E., and Chistou, M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg. 25:335361.Google Scholar
Mack, R. N. 2008. Evaluating the credits and debits of a proposed biofuel species: giant reed (Arundo donax). Weed Sci. 56:883888.Google Scholar
Mariani, C., Cabrini, R., Danin, A., Piffanelli, P., Fricano, A., Gomarasca, S., Dicandilo, M., Grassi, F., and Soave, C. 2010. Origin, diffusion and reproduction of the giant reed (Arundo donax L.): a promising weedy energy crop. Ann. Appl. Biol. 157:191202.CrossRefGoogle Scholar
McElroy, J. S., Yelverton, F. H., Burke, I. C., and Wilcut, J. W. 2004. Absorption, translocation, and metabolism of halosulfuron and trifloxysulfuron in green kyllinga (Kyllinga brevifolia) and false-green kyllinga (K. gracillima). Weed Sci. 52:704710.CrossRefGoogle Scholar
Millhollon, R. W. 1976. Asulam for johnsongrass control in sugarcane. Weed Sci. 24:496499.CrossRefGoogle Scholar
Pheloung, P. C., Williams, P. A., and Halloy, S. R. 1999. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J. Environ. Manage. 57:239251.Google Scholar
Pinheiro, J. C. and Bates, D. M. 2000. Mixed-Effects Models in S and S-PLUS. New York Springer-Verlag. 528 p.Google Scholar
R Development Core Team. 2009. R: A Language and Environment for Statistical Computing. Vienna R Foundation for Statistical Computing, ISBN 3-900051-07-9. http://www.R-project.org.Google Scholar
Raghu, S., Anderson, R. C., Daehler, C. C., Davis, A. S., Wiedenmann, R. N., Simberloff, D., and Mack, R. N. 2006. Adding biofuels to the invasive species fire? Science 313:1742.Google Scholar
Ray, T. B. 1984. Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75:827831.CrossRefGoogle ScholarPubMed
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Softw. 12:122.Google Scholar
Rossa, B., Tuffers, A. V., Naidoo, G., and von Willert, D. J. 1998. Arundo donax L. (Poaceae)—a C3 species with unusually high photosynthetic capacity. Bot. Acta 111:216221.CrossRefGoogle Scholar
Seefeldt, S. S., Jensen, J. E., and Feurst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.Google Scholar
Sharma, M. P., Van Den Born, W. H., and McBeath, D. K. 1978. Spray retention, foliar penetration, translocation and selectivity of asulam in wild oats and flax. Weed Res. 18:169173.Google Scholar
Stephen, N. H., Cook, G. T., and Duncan, H. J. 1980. A possible mechanism of action of asulam involving folic acid biosynthesis. Ann. Appl. Biol. 96:227234.Google Scholar
Troxler, S. C., Burke, I. C., Wilcut, J. W., Smith, W. D., and Burton, J. 2003. Absorption, translocation, and metabolism of foliar-applied trifloxysulfuron in purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Sci. 51:1318.Google Scholar
Veerasekaran, P., Kirkwood, R. C., and Fletcher, W. W. 1977. Studies on the mode of action of asulam in bracken (Pteridium aquilinum L. Kuhn) I. Absorption and translocation of (14C) asulam. Weed Res. 17:3339.Google Scholar
Veerasekaran, P., Kirkwood, R. C., and Parnell, E. W. 1981a. Studies of the mechanism of action of asulam in plants. Part I: antagonistic interaction of asulam and 4-amino-benzoic acid. Pestic. Sci. 12:325329.Google Scholar
Veerasekaran, P., Kirkwood, R. C., and Parnell, E. W. 1981b. Studies of the mechanism of action of asulam in plants. Part II: effect of asulam on the biosynthesis of folic acid. Pestic. Sci. 12:330338.Google Scholar
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. 4th ed. New York Springer. 495 p.CrossRefGoogle Scholar
Wilcut, J. W., Wehtje, G. R., Patterson, M. G., Cole, T. A., and Hicks, T. V. 1989. Absorption, translocation, and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37:175180.Google Scholar