Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T06:55:43.696Z Has data issue: false hasContentIssue false

Response of Energycane to Preemergence and Postemergence Herbicides

Published online by Cambridge University Press:  20 January 2017

Dennis C. Odero*
Affiliation:
Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430
Jose V. Fernandez
Affiliation:
Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430
Hardev S. Sandhu
Affiliation:
Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430
Maninder P. Singh
Affiliation:
Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430
*
Corresponding author's E-mail: [email protected].

Abstract

Energycane has been proposed as a potential, perennial bioenergy crop for lignocellulosic-derived fuel production in the United States. Herbicides currently used in sugarcane and other crops can potentially be used in energycane if there is acceptable tolerance. Also, to limit future invasion of energycane escapes, herbicides used for perennial grass control could potentially be used for management of escapes. In container studies conducted outside, aboveground and belowground biomass of energycane was measured to evaluate energycane tolerance to 9 PRE and 19 POST herbicides used in sugarcane and other crops. PRE application of atrazine, diuron, mesotrione, metribuzin, pendimethalin, and S-metolachlor at rates labeled for sugarcane did not significantly injure (< 3%) or reduce energycane biomass compared with the nontreated plants 28 and 56 d after treatment (DAT). Injury from clomazone (54%), flumioxazin (7%), and hexazinone (29%) was observed 28 DAT. Injury from flumioxazin was transient and was not observed at 56 DAT. At 56 DAT, energycane injury increased to 71 and 98%, respectively, for clomazone and hexazinone. Hexazinone and clomazone applied PRE significantly reduced biomass compared with the nontreated plants. At 28 DAT, POST application of 2,4-D amine, ametryn, asulam, atrazine, carfentrazone, dicamba, halosulfuron, mesotrione, metribuzin, and trifloxysulfuron at labeled rates for sugarcane did not injure or significantly reduce energycane biomass compared with the nontreated plants. Injury was observed when clethodim (99%), clomazone (51%), diuron (51%), flumioxazin (21%), glufosinate (84%), glyphosate (100%), hexazinone (100%), paraquat (66%), and sethoxydim (100%) were applied POST, and each of these treatments reduced energycane biomass compared with the nontreated plants. These results show that several PRE and POST herbicides used for weed management in sugarcane may potentially be used in energycane for weed control. Also, based on our results, clethodim, glyphosate, and sethoxydim would be effective for management of energycane escapes.

La caña energética ha sido propuesta como un cultivo bioenergético potencial para la producción de combustibles lignocelulósicos en los Estados Unidos. Los herbicidas usados actualmente en caña de azúcar y otros cultivos pueden ser potencialmente usados en caña energética si la tolerancia es aceptable. También, para limitar invasiones producto de escapes de caña energética, los herbicidas usados para el control de gramíneas perennes podrían potencialmente ser usados para el manejo de estos escapes. Estudios con potes fueron realizados a la intemperie, en donde se midió la biomasa de la caña energética sobre y dentro del suelo para evaluar la tolerancia a 9 herbicidas PRE y 19 herbicidas POST usados en caña de azúcar y otros cultivos. La aplicación PRE de atrazine, diuron, mesotrione, metribuzin, pendimethalin, y S-metolachlor a dosis de etiqueta para caña de azúcar no causaron un daño significativo (<3%) ni redujeron la biomasa de la caña energética al compararse con plantas sin tratamiento, a 28 y 56 días después del tratamiento (DAT). El daño causado por flumioxazin fue transitorio y no se observó a 56 DAT. A 56 DAT, el daño en la caña energética aumentó a 71 y 98%, respectivamente, para clomazone y hexazinone. Hexazinone y clomazone aplicados PRE redujeron significativamente la biomasa al compararse con las plantas sin tratamiento. A 28 DAT, aplicaciones POST de 2,4-D amine, ametryn, asulam, atrazine, carfentrazone, dicamba, halosulfuron, mesotrione, metribuzin, y trifloxysulfuron a las dosis de etiqueta para caña de azúcar no dañaron o redujeron significativamente la biomasa de la caña energética en comparación con las plantas testigo. Se observó daño cuando se aplicó POST clethodim (99%), clomazone (51%), diuron (51%), flumioxazin (21%), glufosinate (84%), glyphosate (100%), hexazinone (100%), paraquat (66%), y sethoxydim (100%), y cada uno de estos tratamientos redujo la biomasa de la caña energética en comparación con las plantas sin tratamiento. Estos resultados pueden ser potencialmente usados en el control de malezas en caña energética. También, con base en nuestros resultados, clethodim, glyphosate, y sethoxydim podrían ser efectivos para el manejo de escapes de caña energética.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Randy L. Anderson, USDA-ARS.

References

Literature Cited

Anonymous (2009) Best Use Guidelines for Sugarcane Grown in Florida: Callisto. Greensboro, NC: Syngenta Crop Protection Google Scholar
Bhullar, MS, Walia, US, Singh, S, Singh, M, Jhala, AJ (2012) Control of morningglories (Ipomoea spp.) in sugarcane (Saccharum spp.). Weed Technol 26:7782 Google Scholar
Bischoff, KP, Gravois, KA, Reagan, TE, Hoy, JW, Kimbeng, CA, LaBorde, CM, Hawkins, GL (2008) Registration of ‘L 79-1002′ sugarcane. J Plant Regist 2:211217 Google Scholar
Correia, NM, Perussi, FJ, Gomes, LJP (2012) S-metolachlor efficacy on the control of Brachiaria decumbens, Digitaria horizontalis, and Panicum maximum in mechanically green harvested sugarcane. Planta Daninha 30:861870 Google Scholar
Dalley, CD, Richard, EP Jr. (2008) Control of rhizome johnsongrass (Sorghum halepense) in sugarcane with trifloxysulfuron and asulam. Weed Technol 22:397401 Google Scholar
Diebold, S, Robinson, D, Zandstra, J, O'Sullivan, J, Sikkema, PH (2004) Sweet corn sensitivity to bentazon. Weed Technol 18:982987 Google Scholar
[EISA] Energy Independence and Security Act (2007) Public Law 110-140- Energy Independence and Security Act of 2007. Washington, DC: U.S. Government Printing Office. http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/content-detail.html. Accessed May 28, 2014Google Scholar
Farrell, AE, Plevin, RJ, Turner, BT, Jones, AD, O'Hare, M, Kammen, MD (2006) Ethanol can contribute to energy and environmental goals. Science 311:506508 Google Scholar
Fedenko, JR, Erickson, JE, Woodard, KR, Sollenberger, , Vendramini, JMB, Gilbert, RA, Helsel, ZR, Peter, GF (2013) Biomass production and composition of perennial grasses grown for bioenergy in a subtropical climate across Florida, USA. Bioenergy Res 6:10821093 Google Scholar
Green, JM (1998) Differential tolerance of corn (Zea mays) inbreds to four SU herbicides and bentazon. Weed Technol 12:474477 Google Scholar
Grey, TL, Bridges, DC, Raymer, P, Day, D, NeSmith, DS (2000) Differential tolerance of fresh market sweet corn cultivars to the herbicides nicosulfuron and primisulfuron. Hortscience 5:10701073 Google Scholar
Griffin, JL, Miller, DK, Ellis, JM, Clay, PA (2004) Sugarcane tolerance and Italian ryegrass (Lolium multiflorum) control with paraquat. Weed Technol 18:555559 Google Scholar
Groom, MJ, Gray, EM, Townsend, PA (2008) Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv Biol 22:602609 Google Scholar
Hale, AL, Dufrene, EO, Tew, TL, Pan, YB, Viator, RP, White, PM, Veremis, JC, White, WH, Cobill, R, Richard, EP Jr., Rukavina, H, Grisham, MP (2012) Registration of ‘Ho 02-113’ sugarcane. J Plant Regist 7:5157 Google Scholar
Jones, CA, Griffin, JL (2009) Red morningglory (Ipomoea coccinea) control and competition in sugarcane. J Am Soc Sugar Cane Technol 29:2535 Google Scholar
Judice, WE, Griffin, JL, Jones, CA, Etheredge, LM Jr., Salassi, ME (2006) Weed control and economics using reduced tillage programs in sugarcane. Weed Technol 20:319325 Google Scholar
Knoll, JE, Anderson, WF, Strickland, TC, Hubbard, RK, Malik, R (2012) Low-input production of biomass from perennial grasses in the coastal plain of Georgia, USA. Bioenergy Res 5:206214 Google Scholar
Knoll, JE, Anderson, WF, Richard, EP Jr., Doran-Peterson, J, Baldwin, B, Hale, AL, Viator, AP (2013) Harvest date effects on biomass quality and ethanol yield of new energycane (Saccharum hyb.) genotypes in the southeast USA. Biomass Bioenergy 56:147156 Google Scholar
León, RG, Gilbert, RA, Korndörfer, PH, Comstock, JC (2010) Selection criteria and performance of energycane clones (Saccharum spp. × S. spontaneum) for biomass production under tropical and sub-tropical conditions. Ceiba 51:1116 Google Scholar
Lingenfelter, DD, Curran, WS (2007) Effect of glyphosate and several ACCase-inhibitor herbicides on wirestem muhly (Muhlenbergia frondosa) control. Weed Technol 21:732738 Google Scholar
McCray, JB, Morgan, KT, Baucum, L, Ji, S (2014) Sugarcane yield response to nitrogen on sand soils. Agron J 106:14611469 Google Scholar
Millhollon, RW (1993) Preemergence control of itchgrass (Rottboellia cochinchinensis) and johnsongrass (Sorghum halepense) in sugarcane (Saccharum spp. hybrids) with pendimethalin and prodiamine. Weed Sci 41:621626 Google Scholar
Mislevy, P, Martin, FG, Adjei, MB, Miller, JD (1995) Agronomic characteristics of US 72-1153 energycane for biomass. Biomass Bioenerg 9:449457 Google Scholar
O'Sullivan, J, Sikkema, PH (2002) Sweet corn (Zea mays) cultivar tolerance to primisulfuron. Can J Plant Sci 82:261264 Google Scholar
Ragauskas, AJ, Williams, CK, Davison, BH, Britovsek, G, Cairney, J, Eckert, CA, Frederick, WJ Jr., Hallett, JP, Leak, DJ, Liotta, CL, Mielenz, JR, Murphy, M, Templer, R, Tschaplinski, T (2006) The path forward for biofuels and biomaterials. Science 311:484489 Google Scholar
Rankins, A Jr., Shaw, DR, Douglas, J (2005) Response of perennial grasses potentially used as filter strips to selected postemergence herbicides. Weed Technol 19:7377 Google Scholar
Richard, EP Jr. (1989) Response of sugarcane (Saccharum sp.) cultivar to preemergence herbicides. Weed Technol 3:358363 Google Scholar
Richard, EP Jr. (1991) Sensitivity of sugarcane (Saccharum sp.) to glyphosate. Weed Sci 39:7377 Google Scholar
Richard, EP Jr. (1995) Sugarcane (Saccharum spp.) response to simulated fluazifop-P drift. Weed Sci 43:660665 Google Scholar
Richard, EP Jr., Dalley, CD (2006) Sugarcane response to flumioxazin. Weed Technol 20:696701 Google Scholar
Sandhu, HS (2014) New energy cane varieties in Florida. ASA, CSSA, and SSSA International Annual Meeting. Long Beach, CA. https://scisoc.confex.com/scisoc/2014am/webprogram/Paper88578.html. Accessed May 28, 2014Google Scholar
Shaner, DL, ed. (2014) Herbicide Handbook. 10th edn. Lawrence, KS: Weed Science Society of America. 513 pGoogle Scholar
Sinclair, TR, Ray, JD, Mislevy, P, Premazzi, LM (2003) Growth of subtropical forage grasses under extended photoperiod during short-daylength months. Crop Sci 43:618623 Google Scholar
Tew, TL, Cobill, RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. Pages 249272 in Vermerris, W, ed. Genetic Improvement of Bioenergy Crops. New York: Springer Google Scholar
Tew, TL, Dufrene, EO, Cobill, RM, Garrison, DD, White, WH, Grisham, MP, Pan, YB, Legendre, BL, Richard, EP Jr., Miller, JD (2011) Registration of ‘HoCP 91-552’ sugarcane. J Plant Reg 5:181190 Google Scholar
[USDA] U.S. Department of Agriculture (2010) A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022. http://www.usda.gov/documents/USDA_Biofuels_Report_6232010.pdf. Accessed May 28, 2014Google Scholar
Wang, LP, Jackson, PA, Lu, X, Fan, YH, Foreman, JW, Chen, XK, Deng, HH, Fu, C, Ma, L, Aitken, KS (2008) Evaluation of sugarcane × Saccharum spontaneum progeny for biomass composition and yield components. Crop Sci 48:951961 Google Scholar
White, WH, Cobill, RM, Tew, TL, Burner, DM, Grisham, MP, Dufrene, EO, Pan, YB, Richard, EP Jr., Legendre, BL (2011) Registration of ‘Ho 00-961” sugarcane. J Plant Reg 5:332338 Google Scholar
Widstrom, NW, Dowler, CC (1995) Sensitivity of selected field corn inbreds (Zea mays) to nicosulfuron. Weed Technol 9:779782 Google Scholar
Williams, MM II, Pataky, JK, Nordby, JN, Riechers, DE, Sprague, CL, Masiunas, JB (2005) Cross-sensitivity in sweet corn to nicosulfuron and mesotrione applied postemergence. Hortscience 40:18011805 Google Scholar
Woodard, KR, Prine, GM (1993) Dry matter accumulation of elephantgrass, energycane, and elephantmillet in a subtropical climate. Crop Sci 33:818824 Google Scholar
Woodard, KR, Prine, GM, Bachrein, S (1993) Solar energy recovery by elephantgrass, energycane, and elephantmillet canopies. Crop Sci 33:824830 Google Scholar