Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T07:39:46.986Z Has data issue: false hasContentIssue false

Response of Bell Pepper and Broccoli to Simulated Drift Rates of 2,4-D and Dicamba

Published online by Cambridge University Press:  20 January 2017

Mohsen Mohseni-Moghadam
Affiliation:
Department of Horticulture and Crop Science, 1680 Madison Avenue, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
Douglas Doohan*
Affiliation:
Department of Horticulture and Crop Science, 1680 Madison Avenue, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
*
Corresponding author's E-mail: [email protected].

Abstract

Field experiments were conducted at Wooster, OH, in 2010 and 2011 to evaluate the effect of simulated drift rates of 2,4-D, dicamba, and 2,4-D plus glyphosate on processing broccoli and bell pepper. Treatments were made in July of each year when bell pepper and broccoli were at the 10- and eight-leaf stage, respectively, and included five 2,4-D rates (1/50, 1/100, 1/150, 1/200, and 1/400 of the recommended field rate of 840 g ae ha−1), five dicamba rates (1/50, 1/100, 1/150, 1/200, and 1/400 of the recommended field rate of 560 g ae ha−1), and three rates of 2,4-D plus glyphosate (1/100, 1/200, and 1/400 of the recommended field rates). Crop injury was recorded at 7 and 28 d after treatment (DAT). Broccoli and bell pepper responded differently to simulated drift rates each year with higher initial injury ratings observed in 2010, and more persistent symptoms in 2011. 2,4-D at the 1/50 rate reduced broccoli yield by approximately 50% in 2010. Simulated drift rates of 2,4-D did not cause broccoli yield reduction in 2011, nor did simulated drift rates of dicamba, or 2,4-D plus glyphosate reduce yield either year. Although simulated drift treatments did not reduce total yield of bell pepper, the timing of fruit maturity was affected. Yield at first harvest was reduced by high simulated drift rates of each herbicide and by the herbicide tank mix. These results indicate that broccoli and bell pepper are sensitive to very low doses of 2,4-D and dicamba that are typical of those encountered in drift events. The impact of actual drift on delayed maturity and total yield of these crops is likely to be costly for the farmer.

En 2010 y 2011, se realizaron experimentos de campo en Wooster, Ohio, para evaluar el efecto de dosis de deriva simulada de 2,4-D, dicamba, y 2,4-D más glyphosate sobre el brócoli y el pimentón para procesamiento. Los tratamientos se realizaron en Julio de cada año cuando el pimentón y el brócoli estaban en el estado de 10 y 8 hojas, respectivamente, e incluyeron cinco dosis de 2,4-D (1/50, 1/100, 1/150, 1/200, y 1/400 de la dosis de campo recomendada de 840 g ae ha−1), cinco dosis de dicamba (1/50, 1/100, 1/150, 1/200, y 1/400 de la dosis de campo recomendada de 560 g ae ha−1), y de tres dosis de 2,4-D más glyphosate (1/100, 1/200, y 1/400 de las dosis de campo recomendadas). El daño al cultivo fue registrado a 7 y 28 d después del tratamiento (DAT). El brócoli y el pimentón respondieron en forma diferente a las dosis de deriva simulada en cada año con un daño inicial mayor observado en 2010, y síntomas más persistentes en 2011. A la dosis 1/50 el 2,4-D redujo el rendimiento del brócoli en aproximadamente 50% en 2010. Las dosis de deriva simulada de 2,4-D no causaron reducciones en el rendimiento del brócoli en 2011, ni lo hicieron las dosis de deriva simulada de dicamba, o de 2,4-D más glyphosate, en ninguno de los años. Aunque los tratamientos de deriva simulada no redujeron el rendimiento total del pimentón, esos sí afectaron el momento de maduración del fruto. Las dosis más altas de deriva simulada de cada herbicida y de la mezcla de herbicidas redujeron el rendimiento en la primera cosecha. Estos resultados indican que el brócoli y el pimentón son sensibles a dosis muy bajas de 2,4-D y dicamba que son típicas de dosis que se pueden encontrar en eventos de deriva. El impacto de deriva real en el retraso en la madurez y el rendimiento total de estos cultivos probablemente resultará costoso para el productor.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

[AAPCO] Association of American Pesticide Control Officials (2005) Pesticide Drift Enforcement Survey Report. Milford, DE. http://aapco.org/documents/surveys/DriftEnforce05Rpt.html. Accessed June 20, 2014Google Scholar
Akesson, NB, Yates, WE (1964) Problems relating to application of agricultural chemicals and resulting drift residue. Annu Rev Entomol 9:285318 Google Scholar
Al-Khatib, K, Claassen, MM, Stahlman, PW, Geier, PW, Regehr, DL, Duncan, SR, Heer, WF (2003) Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethypyr and sethoxydim. Weed Technol 17:261265 Google Scholar
Al-Khatib, K, Parker, R, Fuerst, EP (1993) Wine grape (Vitis vinifera L.) response to simulated herbicide drift. Weed Technol 7:97102 Google Scholar
Al-Khatib, K, Peterson, DE (1999) Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol 13:264270 Google Scholar
Anonymous (2011) Enlist Weed Control System. Dow AgroSciences. M09-137-006 (02/11) BR 010-42158 DAAGDHTA0076. Indianapolis, IN: Dow AgroSciences. 19 pGoogle Scholar
Anonymous (2014) OARDC Weather System. http://www.oardc.ohio-state.edu/newweather/stationinfo.asp?id=1. Accessed November 3, 2014Google Scholar
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analyses of experiments with two- and three-factor treatment designs. Agron J 81:665672 Google Scholar
Egan, JF, Barlow, KM, Mortensen, DA (2014) A meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Sci 62:193206 Google Scholar
Everitt, JD, Keeling, JW (2007) Weed control and cotton (Gossypium hirsutum) response to preplant applications of dicamba, 2,4-D, and diflufenzopyr plus dicamba. Weed Technol 21:506510 Google Scholar
Everman, W, Jordan, D (2013) Small grain weed control. Pages 7179 in Weisz, R, ed. 2013 Small Grain Production Guide. Raleigh, NC: North Carolina Cooperative Extension. AG-580Google Scholar
Felix, J, Boydston, R, Burke, IC (2011) Potato response to simulated glyphosate drift. Weed Technol 25:637644 Google Scholar
Flessner, ML, McElroy, JS, Cardoso, LA, Martins, D (2012) Simulated spray drift of aminocyclopyrachlor on cantaloupe, eggplant, and cotton. Weed Technol 26:724730 Google Scholar
Frans, R, Talbert, R, Marx, D, Crowley, H (1986) Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, ND, ed. Research Methods in Weed Science. 3rd edn. Champaign, IL: Southern Weed Science Society Google Scholar
Franzaring, J, Kempenaar, C, Pikaar, P, van der Eerden, L (2000) Effects of herbicide vapors on nontarget plants: screening of phytotoxic effects of ethofumesate and chlorpropham on wild plant species naturally growing in ditches, hedges and field boundaries. Wageningen, the Netherlands: Plant Research International. 32 pGoogle Scholar
Kruger, GR, Hynes, D, Johnson, B, Doohan, DJ, Weller, SC (2011) Risk of off-site movement of dicamba and 2,4-D or glyphosate to processing and fresh vegetables. Pages 161175 in Proceedings of the Symposium on The New 2,4-D and Dicamba-Tolerant Crops. Columbus, OH: The Ohio State University Google Scholar
Kruger, GR, Johnson, WG, Doohan, DJ, Weller, SC (2012) Dose response of glyphosate and dicamba on tomato (Lycopersicon esculentum) injury. Weed Technol 26:256260 Google Scholar
Marple, ME, Shoup, D, Al-Khatib, K, Peterson, DE (2007) Cotton response to simulated drift of seven hormonal-type herbicides. Weed Technol 21:987992 Google Scholar
[NASS] National Agricultural Statistics Service (2014) Statistics by Subject. http://www.nass.usda.gov/Statistics_by_Subject/index.php. Accessed June 20, 2014Google Scholar
Peterson, RKD, Hulting, AG (2004) A comparative ecological risk assessment for herbicides used on spring wheat: the effect of glyphosate when used within a glyphosate-tolerant wheat system. Weed Sci 52:834844 Google Scholar
Pimentel, D, Acquay, H, Biltonen, M, Rice, P, Silva, M, Nelson, J, Lipnet, V, Gilordano, S, Horowitz, A, D'Amore, M (1992) Environmental and economic costs of pesticide use. BioScience 42:750760 Google Scholar
[PISC] Primary Industries Standing Committee Report (2002) Spray Drift Management: Principles, Strategies, and Supporting Information. Primary Industries Standing Committee. Collingwood, Australia: CSIRO Publishing. 71 pGoogle Scholar
[USDA] U.S. Department of Agriculture (2005) United States Standards for Grades of Sweet Peppers. Washington, DC: U.S. Department of Agriculture. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050318. Accessed November 3, 2014Google Scholar
[US EPA] U.S. Environmental Protection Agency (2014) Introduction to Pesticide Drift. U.S. Environmental Protection Agency, Washington, DC. http://www2.epa.gov/reducing-pesticide-drift/introduction-pesticide-drift. Accessed October 10, 2014Google Scholar