Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T14:46:33.687Z Has data issue: false hasContentIssue false

Resistance to Glyphosate in Palmer Amaranth (Amaranthus palmeri) Populations from New Mexico Pecan Orchards

Published online by Cambridge University Press:  20 January 2017

Mohsen Mohseni-Moghadam
Affiliation:
Department of Plant and Environmental Sciences
Jill Schroeder
Affiliation:
Department of Entomology, Plant Pathology and Weed Science
Richard Heerema
Affiliation:
Department of Extension Plant Sciences, all of New Mexico State University, Las Cruces, NM 88003
Jamshid Ashigh*
Affiliation:
Department of Extension Plant Sciences, all of New Mexico State University, Las Cruces, NM 88003
*
Corresponding author's E-mail: [email protected]

Abstract

Two populations of Palmer amaranth suspected of being resistant to glyphosate have been reported since 2007 in pecan orchards in Doña Ana County, New Mexico. The objectives of the study were to confirm and evaluate the level of resistance, to evaluate the effectiveness of alternative herbicide mechanisms of action, and to compare the cost of effective alternative herbicides for weed management in pecan orchards. Greenhouse experiments indicated that the resistant populations were able to survive glyphosate at 736 g ae ha−1. Compared with a susceptible (S) population, one of the resistant (R) populations had sevenfold resistance to glyphosate. POST application of 12 herbicides, with five different mechanisms of action, all provided at least 88% control of both R and S populations when applied at their recommended field rates. PRE application of trifluralin and metolachlor also provided more than 99% control of R and S populations. The results of field studies indicated that the financial benefit of season-long weed management with glyphosate, in pecan orchards, was comparable with some of the tested alternative herbicides.

Dos poblaciones de Amaranthus palmeri sospechosas de ser resistentes a glyphosate han sido reportadas desde 2007 en plantaciones de pacana en el condado Doña Ana en New Mexico. Los objetivos de este estudio fueron confirmar y evaluar los niveles de resistencia, evaluar la efectividad de herbicidas con mecanismos de acción alternativos, y comparar la eficacia y el costo de herbicidas alternativos efectivos para el manejo de malezas en plantaciones de pacana. Experimentos de invernadero indicaron que las poblaciones resistentes fueron capaces de sobrevivir a glyphosate a 736 g ae ha-1. Comparada con una población susceptible (S), una de las poblaciones resistentes (R) tuvo una resistencia a glyphosate siete veces mayor. Aplicaciones en pos emergencia (POST) de 12 herbicidas, con cinco mecanismos de acción diferentes, proporcionaron un control de al menos 88% para ambas poblaciones R y S cuando se aplicaron a sus respectivas dosis de campo recomendadas. La aplicación en preemergencia (PRE) de trifluralin y metolachlor también brindó mas de 99% de control de poblaciones R y S. Los resultados de estudios de campo indicaron que en plantaciones de pacana, el beneficio monetario de realizar el manejo de malezas a lo largo de todo el ciclo productivo con glyphosate, fue comparable con algunas de los herbicidas alternativos evaluados.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y. M., Biest, N. A., and Dill, G. M. 2002. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phophsate synthase. Plant Physiol. 129 :12651275.Google Scholar
Bonny, S. 2008. Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. Agron. Sust. Dev. 28 :2132.Google Scholar
Bowley, S. R. 1999. A Hitchhicker's Guide to Statistics in Plant Biology. Guelph, ON, Canada : Plants et al., Inc. 250 p.Google Scholar
Carpenter, J. and Gianessi, L. 1999. Herbicide tolerant soybeans: why growers are adopting Roundup Ready varieties. AgBioForum. 2 :6572.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54 :620626.Google Scholar
Culpepper, A. S. and York, A. C. 2000. Weed management in ultranarrow-row cotton. Weed Technol. 14 :1929.Google Scholar
Diggle, A. J., Neve, P. B., and Smith, E. P. 2003. Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res. 43 :371382.Google Scholar
Duke, S. O. and Powles, S. 2008. Glyphosate-resistant weeds and crops. Pest Manag. Sci. 64 :317318.Google Scholar
Ehleringer, J. 1983. Ecophysiology of Amaranthus palmeri, a Sonoran desert summer annual. Oecologia 57 :107112.Google Scholar
Gaines, T. A., Zhang, W., Wang, D., Bukun, B., Chisholm, S. T., Shaner, D. L., Nissen, S. J., Patzoldt, W. L., Tranel, P. J., Culpepper, A. S., Grey, T. L., Webster, T. M., Vencill, W. K., Sammons, R. D., Jiang, J., Preston, C., Leach, J. E., and Westra, P. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc. Natl. Acad. Sci. 107 :10291034.Google Scholar
Ge, X., d'Avignon, D. A., Ackerman, J. J. H., and Sammons, R. D. 2010. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag. Sci. 66 :345348.Google Scholar
Green, J. M. 2007. Review of glyphosate and ALS-inhibiting herbicide crop resistance and resistance weed management. Weed Technol. 21 :547558.Google Scholar
Guo, P. and Al-Khatib, K. 2003. Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis). Weed Sci. 51 :869875.Google Scholar
Heap, I. 2011. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: August 4, 2011.Google Scholar
Horak, M. J. and Loughlin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48 :347355.Google Scholar
Hurley, T. M., Mitchell, P. D., and Frisvold, G. B. 2009. Weed management costs, weed best management practices, and the Roundup ReadyTM Weed management program. AgBioForum. 12 :281290.Google Scholar
Hutchinson, P.J.S., Tonks, D. J., and Beutler, B. R. 2003. Efficacy and economics of weed control programs in glyphosate-resistant potato (Solanum tuberosum). Weed Technol. 17 :854865.Google Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35 :199204.Google Scholar
Kruger, G. R., Davis, V. M., Weller, S. C., and Johnson, W. G. 2008. Response and survival of rosette-stage horseweed (Conyza canadensis) after exposure to 2,4-D. Weed Sci. 56 :748752.Google Scholar
Llewellyn, R. S., Lindner, R. K., Pannell, D. J., and Powles, S. B. 2002. Resistance and the herbicide resource: perceptions of Western Australian grain growers. Crop Prot. 21 :10671075.Google Scholar
McEachern, G. R. 2007. Orchard floor management. Pages 189191 in Stein, L. A. and McEachern, G. R., eds. Texas Pecan Handbook. College Station, TX : Texas AgriLife Extension Service.Google Scholar
McEachern, G. R. and Storey, J. B. 1984. Low volume, high concentrate roundup herbicide control of pecan weeds. Pecan Q. 18 :2730.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49 :202208.Google Scholar
Nandula, V. K., Reddy, K. N., Duke, S. O., and Poston, D. H. 2005. Glyphosate-resistant weeds: current status and future outlook. Outlooks Pest Manag. 12 :183197.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22 :108113.Google Scholar
Patterson, M. G., Wehtje, G., and Goff, W. D. 1990. Effects of weed control and irrigation on the growth of young pecans. Weed Technol. 4 :892894.Google Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2002. Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Prot. 21 :707712.Google Scholar
Perez, A., Alister, C., and Kogan, M. 2004. Absorption, translocation and allocation of glyphosate in resistant and susceptible Chilean biotypes of Lolium multiflorum . Weed Biol. Manag. 4 :5658.Google Scholar
Potter, M. T. 2011. The Effect of Orchard Floor Vegetation on Mature Pecan Tree Water and Nutrient Status in the Southwest United States. MSc. dissertation. Las Cruces, NM : New Mexico State University. 80 p.Google Scholar
Powles, S. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci. 64 :360365.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9 :218227.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri ) in Tennessee has low-level glyphosate resistance. Weed Technol. 22 :119123.Google Scholar
Stephenson, D. O. IV, Bond, J. A., Walker, E. R., Bararpour, M. T., and Oliver, L. R. 2004. Evaluation of mesotrione in Mississippi delta corn production. Weed Technol. 18 :11111116.Google Scholar
Steyermark, J. A. 1963. Flora of Missouri. Ames, IA : Iowa State University Press. 622 p.Google Scholar
Webster, T. M. 2001. Weed survey—southern states, broadleaf crops subsection. Proc. South. Weed Sci. Soc. 54 :244259.Google Scholar
Weersink, A., Llewellyn, R. S., and Pannell, D. J. 2005. Economics of pre-emptive management to avoid weed resistance to glyphosate in Australia. Crop Prot. 24 :659665.Google Scholar
Wolf, M. E. and Smith, M. W. 1999. Cutleaf evening primrose and Palmer amaranth reduce growth of nonbearing pecan trees. HortScience 34 :10821084.Google Scholar
Woodburn, A. T. 2000. Glyphosate: production, pricing and use worldwide. Pest Manag. Sci. 56 :309312.Google Scholar