Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T10:52:39.497Z Has data issue: false hasContentIssue false

Residual Effect of Herbicides Used in Pastures on Clover Establishment and Productivity

Published online by Cambridge University Press:  23 February 2017

Angela S. Laird
Affiliation:
Macon Ridge Research Station, LSU AgCenter, 212A Macon Ridge Road, Winnsboro, LA 71295
Donnie K. Miller*
Affiliation:
Macon Ridge Research Station, LSU AgCenter, 212A Macon Ridge Road, Winnsboro, LA 71295
James L. Griffin
Affiliation:
School of Plant, Environmental, and Soil Sciences, LSU AgCenter, 104 M. B. Sturgis Hall, Baton Rouge, LA 70803
Edward K. Twidwell
Affiliation:
School of Plant, Environmental, and Soil Sciences, LSU AgCenter, 104 M. B. Sturgis Hall, Baton Rouge, LA 70803
Montgomery W. Alison
Affiliation:
Macon Ridge Research Station, LSU AgCenter, 212A Macon Ridge Road, Winnsboro, LA 71295
David C. Blouin
Affiliation:
Department of Experimental Statistics, LSU AgCenter, 161 Martin D. Woodin Hall, Baton Rouge, LA 70803
*
Corresponding author's E-mail: [email protected].

Abstract

A major hindrance to establishment of successful complementary forage systems that include warm-season perennial grasses and clovers is tolerance of the latter to herbicides available for weed control. Field experiments were conducted in 2013 at two locations in northeast Louisiana to evaluate simulated residual rate effects of fluroxypyr plus triclopyr and 2,4-D plus picloram applied at 0, 0.25, 0.38, and 0.5× use rates immediately after fall planting of ball, white, crimson, and red clover. For all clovers, when averaged across herbicide rates, plant population 161/171 d after planting (DAP), ground cover, and height 184/196 DAP were equivalent for fluroxypyr plus triclopyr and the nontreated control and greater than 2,4-D plus picloram. Averaged across clovers, plant height after all rates of fluroxypyr plus triclopyr was equivalent to the nontreated control (14.2 to 14.3 vs. 15.3 cm) and greater than 2,4-D plus picloram. Compared with the nontreated control, 2,4-D plus picloram at 25, 38, and 50% of the normal use rates reduced height 58, 76, and 85%, respectively. When averaged across clover species, yield for fluroxypyr plus triclopyr at all rates was equivalent to the nontreated control (2,624 to 2,840 vs. 2,812 kg ha−1). Compared with the nontreated control, 2,4-D plus picloram at the 0.25, 0.38, and 0.50× use rates reduced yield 65, 89, and 99%, respectively.

Uno de los mayores impedimentos para el establecimiento de sistemas exitosos de forrajes complementarios que incluyan pastos perennes de clima cálido y leguminosas del género Trifolium es la tolerancia de estas leguminosas a los herbicidas disponibles para el control de malezas. En 2013, se realizaron experimentos de campo en dos localidades en el noreste de Louisiana para evaluar los efectos de dosis residuales simuladas de fluroxypyr mas triclopyr y 2,4-D más picloram aplicados a dosis de 0, 0.25, 0.38, y 0.5× inmediatamente después de la siembra en el otoño de Trifolium nigrescens, Trifolium repens, Trifolium incarnatum, y Trifolium pratense. Para todos las especies de Trifolium, cuando se promediaron las dosis de herbicida, la población de plantas 161/171 d después de la siembra (DAP), la cobertura del suelo, y la altura 184/196 DAP fueron equivalentes para fluroxypyr más triclopyr y el testigo sin tratamiento y fueron mayores que para 2,4-D más picloram. Al promediar las especies de Trifolium, la altura de planta después del tratamiento con todas las dosis de fluroxypyr más triclopyr fue equivalente al testigo sin tratamiento (14.2 a 14.3 vs. 15.3 m) y mayor que 2,4-D más picloram. Al compararse con el testigo sin tratamiento, 2,4-D más picloram a 25, 38, y 50% de las dosis normales de uso redujeron la altura 58, 76, y 85%, respectivamente. Cuando se promediaron las especies de Trifolium, el rendimiento con fluroxypyr más triclopyr con todas las dosis fue equivalente al testigo sin tratamiento (2,624 a 2,849 vs. 2,812 kg ha−1). Al compararse con el testigo sin tratamiento, 2,4-D más picloram a dosis de 0.25, 0.38, y 0.50× redujeron el rendimiento 65, 89, y 99%, respectivamente.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Kevin Bradley, University of Missouri.

References

Literature Cited

Anonymous (2002) Herbicide Handbook. 8th edn. Lawrence, KS: Weed Science Society of America Google Scholar
Anonymous (2006) USDA NRCS Plant Material Program. ed. Clover, White. Plant Fact Sheet. http://plants.usda.gov/factsheet/pdf/fs_trre3.pdf. Accessed October 6, 2014Google Scholar
Anonymous (2008) PastureGard® herbicide label. Dow AgroSciences. http://www.cdms.net/LDat/ld6KS006.pdf. Accessed October 30, 2014Google Scholar
Anonymous (2009a) USDA NRCS Plant Material Program, ed. Clover, Crimson. Plant Fact Sheet. http://plants.usda.gov/factsheet/pdf/fs_trin3.pdf. Accessed October 6, 2014Google Scholar
Anonymous (2009b) Grazon P+D® herbicide label. Dow AgroSciences. http://www.cdms.net/LDat/ld0B1014.pdf. Accessed September 24, 2014Google Scholar
Anonymous (2014) LSU AgCenter, ed. Louisiana Suggested Chemical Weed Management Guide. Pub. 1565. http://www.lsuagcenter.com/en/communications/publications/Publications+Catalog/Crops+and+Livestock/Weed+Control/Louisiana+Suggested+Chemical+Weed+Management+Guide.htm). Accessed October 3, 2014Google Scholar
Ball, DM, Hoveland, CS, Lacefield, GD (2002) Southern Forages. 3rd edn. Norcross, GA: Potash & Phosphate Institute and Foundation for Ag Research Google Scholar
Barnes, RF, Nelson, CJ, Moore, KJ, Collins, M (2007) Forages: The Science of Grassland Agriculture. 6th edn. Oxford, UK: Blackwell Google Scholar
Cudney, DW (1996) Why Herbicides Are Selective. Proceedings of the California Exotic Pest Plant Council. 1996 Symposium. http://www.cal-ipc.org/symposia/archive/pdf/1996_symposium_proceedings1827.pdf. Accessed October 3, 2014Google Scholar
Gunter, SA, Whitworth, WA, Montgomery, TG, Beck, PA (2012) Cool-season annual pastures with clovers to supplement wintering beef cows nursing calves. J. Anim Sci. 3:25.Google Scholar
Hamaker, JW, Johnston, H, Martin, RT, Redeman, CT (1963) A picolinic acid derivative: a plant growth regulator. Science 141: 363.Google Scholar
Han, K, Alison, MW Jr, Pitman, WD, McCormick, ME (2012) Contributions of overseeded clovers to bermudagrass pastures in several environments. Crop Sci 52: 431441.Google Scholar
Han, K, Alison, MW Jr, Pitman, WD, McCormick, ME, Westra, J (2010) Clover value in pastures rises as nitrogen fertilizer price increases. LA Agric 53: 69 Google Scholar
Hoveland, CS (1960) Ball Clover. Leaflet 64. Auburn, AL: Auburn University Agricultural Experiment Station Google Scholar
Johnston, G (2012) Pasture Tune-Up. Agriculture.com. http://www.agriculture.com/livestock/cattle/grazing/pasturetuneup_279-ar23043. Accessed October 6, 2014Google Scholar
Lane, RA, Anderson, MJ (2014) Pasture herbicide reside effects on crimson clover. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America International Annual Meeting. https://scisoc.confex.com/scisoc/2014am/webprogram/Paper87775.html. Accessed August 1, 2016Google Scholar
Lane, RA, Anderson, MJ (2016) Pasture herbicide reside effects on crimson and white clover. American Forage & Grassland Council Proceedings. http://www.afgc.org/proceedings/2016/LaneRobertSummaryAFGC2016.pdf. Accessed August 1, 2016Google Scholar
Quesenberry, KH, Blount, AR, eds. (2006) Southern Belle and Cherokee Red Clover in Florida. SS-AGR-40. Gainesville: Dept. of Agronomy and IFAS, Florida State University. https://edis.ifas.ufl.edu/pdffiles/AA/AA19000.pdf. Accessed October 6, 2014Google Scholar
Sellers, BA, Ferrell, JA (2010) Weed Management in Pastures and Rangeland. SS-AGR-08. Gainesville, FL: Department of Agronomy and IFAS, Florida State University Google Scholar
Smith, GR 2010. History of Crimson Clover in the USA. Proceedings of Agricultural Scientific Conference. http://ihsg.agriscience.info/subsites/conference2010/documents/IHSC2010OralProceedings(24).pdf. Accessed October 6, 2014Google Scholar
Taylor, NL, Henning, JC, Lacefield, GD, eds. (1997) Growing Red Clover in Kentucky. Univ.ersity of Kentucky, Extension.Pubublication AGR-33. http://www2.ca.uky.edu/agc/pubs/agr/agr33/agr33.pdf. Accessed October 6, 2014Google Scholar
Twidwell, EK, Alison, MW, Pitman, WD, Han, KJ, Doughty, T, Williams, G, Ashley, JL (2013) Cool-Season Pasture and Forage Varieties. LSU Agricultural Center Publication 2334. https://www.lsuagcenter.com/NR/rdonlyres/BF21C148-FFBD-4183-822E-4B1A84810FA2/92670/pub2334CoolSeasonPasture20132014.pdf. Accessed October 6, 2014Google Scholar