Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T21:25:28.007Z Has data issue: false hasContentIssue false

Redroot Pigweed (Amaranthus retroflexus) Seedling Emergence and Growth in Soils Amended with Composted Dairy Cattle Manure and Fresh Dairy Cattle Manure under Greenhouse Conditions

Published online by Cambridge University Press:  20 January 2017

Karen J. Amisi
Affiliation:
Biology Department, Grand Valley State University, Allendale, MI 49401
Doug Doohan*
Affiliation:
Department of Horticulture & Crop Science, The Ohio State University, Wooster, OH 44691
*
Corresponding author's E-mail: [email protected].

Abstract

Organic soil amendments are known to affect the composition and density of annual weed communities. The objective of this research was to measure the effect on emergence and growth of redroot pigweed seedlings when soil was amended with composted dairy manure at 18, 36, and 54 T/ha, or with raw dairy manure at 41, 82, and 123 T/ha. Data recorded (1) seedling emergence over 12 days, (2) number of leaves and total leaf area, (3) shoot and root dry weight, and (4) seed number. Maximum seedling emergence (32%) occurred in nonamended soil (the control). Emergence declined in a linear fashion when soil was amended with manure or with compost. Compost additions affected seedling emergence more severely than did manure additions. For every measure of redroot pigweed growth except seed production, amendment with manure at 123 T/ha retarded growth compared to soil alone or compost-amended mixes. Manure applied at 82 T/ha reduced leaf area and plant height relative to other treatments. Growth of redroot pigweed in soil amended with compost at 36 and 54 T/ha was always equal to or greater than growth in soil that was not amended. Seed production in one of two runs of the experiment was more than double in soils amended with compost at 36 and 54 T/ha compared to the nonamended soil. These results suggest that amending soils with raw dairy manure may decrease the competitiveness of redroot pigweed, whereas amending with composted manure is likely to increase competitiveness.

Los tratamientos orgánicos al suelo son conocidos por afectar la composición y densidad de las comunidades anuales de maleza. El objetivo de esta investigación fue medir el efecto de la emergencia y el crecimiento de Amaranthus retroflexus cuando el suelo tratado con composta de estiércol de ganado estabulado a 18, 36 y 54 T/ha, o con estiércol de ganado vacuno lechero a 41, 82 y 123 T/ha. La información registrada fue: 1) Emergencia de las plantitas después de 12 días, 2) Número de hojas y el tamaño de las hojas, 3) Peso de los retoños y la raíz seca y, 4) Número de semillas. La emergencia máxima (32%) ocurrió en el suelo no tratado. La emergencia no tuvo éxito en una forma lineal cuando la tierra fue tratada con estiércol o con composta. La adición de la composta afectó la emergencia de las plantitas mucho más severamente que la adición de estiércol. Para cada medida de crecimiento de amaranthus retroflexus exceptuando la producción de semillas en suelo tratado con estiércol a 123 T/ha se retardó, el crecimiento comparado con aquel sembrado en terreno sin ningún tratamiento o en el que se adicionó composta múltiple. Estiércol aplicado en dosis de 82 T/ha, redujo el tamaño de la hoja y la altura de la planta en comparación a otros tratamientos. El crecimiento de redroot pigweed en suelo tratado con composta en dosis de 36 y 54 T/ha, fue igual o mejor al crecimiento de la planta en el suelo que no fue tratado. La producción de semilla en uno o dos tratamientos del experimento, fue más del doble en suelo tratado con composta en dosis de 36 y 54 T/ha comparado con el suelo no tratado. Los resultados sugieren que suelos tratados con estiércol de ganado vacuno lechero pueden disminuir la competencia de amaranthus retroflexus mientras que suelos tratados con estiércol composta incrementan la competencia.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altieri, W. and Liebman, M. A. 1988. The impact, uses, and role of weeds in agroecoystems. Pages 16. in. Weed Management in Agroecosytems: Ecological Approaches. Boca Raton, FL: CRC Press.Google Scholar
Amisi, K. J. 2005. Strategies for Managing Weeds in a Wheat, Red Clover, Vegetable Crop Rotation Transitioning to Organic Production. Ph.D. dissertation. Wooster, OH: The Ohio State University. 28, 45, 131-137.Google Scholar
Blackshaw, R. E., Molnar, L. J., and Larney, F. J. 2005. Fertilizer, manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Prot 24:971980.Google Scholar
Cardina, J., Regnier, E., and Harrison, K. 1991. Long-term effects on seed banks in three Ohio soils. Weed Sci 39:186194.Google Scholar
Doran, J. 1995. Building soil quality. Pages 151158. in. Proceedings of the 1995 Conservation Workshop on Opportunities and Challenges in Sustainable Agriculture. Red Deer, Alberta, Canada: Alberta Conservation Tillage Society and Alberta Agriculture Conservation, Development Branch.Google Scholar
Drinkwater, L. E., Lotourneau, D. K., Workneh, F., van Bruggen, A. H. C., and Shenan, C. 1995. Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol. Appl 5:10981112.Google Scholar
Jackson, L. E., Ramirez, I., Yokota, R., Fennimore, S. A., Koike, S. T., Henderson, D. M., Chaney, W. E., Calderon, F. J., and Klonsky, K. 2004. On-farm assessment of organic matter and tillage management on vegetable yield, soil, weeds, pests, and economics in California. Agric. Ecosyst. Environ 103:443463.Google Scholar
Liebman, M. and Ohno, T. 1998. Crop rotation and legume residue effects on weed emergence and growth: implications for weed management. Pages 181221. In Hatfield, J. L., Buhler, D. D., and Stewart, B. A. Integrated Weed and Soil Management. Chelsea, MI: Ann Arbor Press.Google Scholar
Magdoff, F. 1992. Building soils for better crops: Organic matter management. Lincoln, NE: University of Nebraska Press. 2338.Google Scholar
Menalled, F. D., Liebman, M., and Buhler, D. D. 2004. Impact of composted swine manure and tillage on common waterhemp (Amaranthus rudis) competition with soybean. Weed Sci 52:605613.Google Scholar
Menalled, F. D., Buhler, D. D., and Liebman, M. 2005. Composted swine manure effects on germination and early growth of crop and weed species under greenhouse conditions. Weed Technol 19:784789.Google Scholar
Mt. Pleasant, J. and Schlather, K. J. 1994. Incidence of weed seed in cow (Bos sp.) manure and its importance as a source for cropland. Weed Technol 8:304310.Google Scholar
Ozores-Hampton, M., Stoffella, P. J., Bewick, T. A., Cantliffe, D. J., and Obreza, T. A. 1999. Effect of age of cocomposted MSW and biosolids on weed seed germination. Compost. Sci. Util 7 (1):5157.Google Scholar
Ozores-Hampton, M., Obreza, T. A., and Stoffella, P. J. 2001. Mulching with composted MSW for biological control of weeds in vegetable crops. Compost Sci. Util 9 (4):352361.Google Scholar
Partriquin, D. G., Baines, D., and Abboud, A. 1995. Soil fertility effects on pests and diseases. Pages 161174. In Cook, H. F. and Leeds, H. C. Soil Management in Sustainable Agriculture. Wye, United Kingdom: Wye College Press.Google Scholar
Peyvast, G. H., Sedghi Moghaddam, M., and Olfati, J. A. 2007. Effect of municipal solid waste compost on weed control, yield and some quality indices of green pepper (Capsicum annuum L.). Biosci. Biotechnol. Res. Asia 4 (2):449456.Google Scholar
Phelan, P. L., Mason, J. F., and Stinner, B. R. 1995. Soil fertility management and host preference by European corn borer, Ostrinia nubilalis (Hubner), on Zea mays L.: a comparison of organic and conventional chemical farming. Agric. Ecosyst. Environ 56:18.Google Scholar
Relf, D. 2001. Mulching for a healthy landscape. Blacksburg, VA: Virginia Cooperative Extension, Virginia Tech University, Publication. 426724.Google Scholar
SAS 1999. SAS OnLine Doc, Version 8. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Simpson, K. 1986. Fertilizers and manures. New York: Longman Group Limited. 254 p.Google Scholar
van Bruggen, A. H. C. 1995. Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Dis 79:976984.Google Scholar
Walz, E. 1999. Final results of the third biennial national organic farmers' survey. Santa Cruz, CA: Organic Farming Research Foundation. 126 p.Google Scholar
Wiese, A. F., Sweeten, J. M., Bean, B. W., Salisbury, C. D., and Chenault, E. W. 1998. High temperature composting of cattle feedlot manure kills weed seed. Appl. Eng. Agric 14:377380.Google Scholar