Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T11:12:00.976Z Has data issue: false hasContentIssue false

Preemergence Herbicides Influence Sprig Establishment of ‘TifEagle’ Bermudagrass

Published online by Cambridge University Press:  20 January 2017

Patrick E. McCullough*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, and Tifton, GA
Brian M. Schwartz
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, and Tifton, GA
Timothy Grey
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, and Tifton, GA
Theodore Webster
Affiliation:
Crop Protection and Management Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Tifton, GA
*
Corresponding author's E-mail: [email protected]

Abstract

The presence of weeds during bermudagrass putting green establishment can reduce growth and turf quality. Three field experiments were conducted in Georgia to investigate efficacy of dimethenamid, S-metolachlor, and oxadiazon on the establishment of ‘TifEagle’ bermudagrass from sprigs. Dimethenamid at 0.85 and 1.7 kg ai ha−1, S-metolachlor at 1.1 and 2.2 kg ai ha−1, and oxadiazon at 1.1, 2.2, and 4.4 kg ai ha−1 did not reduce bermudagrass cover from the untreated after 8 wk. S-metolachlor at 4.4 kg ha−1 was the only treatment that reduced sprig cover from the untreated after 12 wk. All S-metolachlor and oxadiazon treatments provided excellent (≥ 90%) green kyllinga control by 8 wk after treatment (WAT) while dimethenamid at 0.85, 1.7, and 3.4 kg ha−1 provided 78, 85, and 92% control, respectively. Dimethenamid treatments provided poor control (< 70%) of spotted spurge but fair control (70 to 79%) was achieved from S-metolachlor at 4.4 kg ha−1 and oxadiazon at 2.2 and 4.4 kg ha−1 by 8 WAT. Overall, low to middle rates of the herbicides tested appear to temporarily inhibit TifEagle bermudagrass sprig establishment but high rates of dimethenamid and S-metolachlor may reduce cover from the untreated.

La presencia de malezas durante el establecimiento del zacate bermuda (Cynodon dactylon × C. transvaalensis Burtt-Davy) en los hoyos de golf puede reducir el crecimiento y la calidad del césped. Se realizaron tres experimentos de campo en Georgia para investigar la eficacia de dimethenamid, S-metolachlor y oxadiazon en el establecimiento del zacate bermuda ‘TifEagle’ a partir de la siembra de estolones. Dimethenamid a 0.85 y 1.7 kg ia ha−1, S-metolachlor a 1.1 y 2.2 kg ia. ha−1 y oxadiazon a 1.1, 2.2 y 4.4 kg ia ha−1 no redujeron la cobertura del zacate en comparación con el testigo no tratado después de 8 semanas. S-metolachlor a 4.4 kg ha−1 fue el único tratamiento que redujo la cobertura de estolones en comparación con el testigo no tratado después de 12 semanas. Todos los tratamientos de S-metolachlor y oxadiazon proporcionaron excelente control (≥90%) de Kyllinga brevifolia a las 8 semanas después del tratamiento, mientras que dimethenamid a 0.85, 1.7, y 3.4 kg ha−1 proporcionó 78, 85 y 92% de control, respectivamente. Los tratamientos de dimethenamid resultaron en un control deficiente (<70%) de Euphorbia maculata, pero un control regular (de 70 a 79%) se logró con S-metolachlor a 4.4 kg ha−1 y oxadiazon a 2.2 y 4.4 kg ha−1 a las 8 semanas después del tratamiento. En general, las dosis bajas o medias de los herbicidas probados parecen inhibir temporalmente el establecimiento del zacate bermuda TifEagle, pero las dosis altas de dimethenamid y S-metolachlor pueden reducir la cobertura en comparación con el testigo no tratado.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2003. Pennant Magnum herbicide label. Greensboro, NC Syngenta Crop Protection.Google Scholar
Anonymous, . 2009. Tower herbicide label. Research Triangle Park, NC BASF.Google Scholar
Belcher, J. L., Walker, R. H., Santen, E. V., Santen, E. V., and Wehtje, G. R. 2002. Nontuberous sedge and kyllinga species' response to herbicides. Weed Technol. 16:575579.Google Scholar
Bingham, S. W. 1967. Influence of herbicides on root development of bermudagrass. Weeds 15:363365.Google Scholar
Bingham, S. W. and Hall, J. R. III. 1985. Effects of herbicides on bermudagrass (Cynodon spp.) sprig establishment. Weed Sci. 33:253257.Google Scholar
Bollman, S. L. and Sprague, C. L. 2007. Optimizing s-metolachlor and dimethenamid-P in sugarbeet microrate treatments. Weed Technol. 21:10541063.CrossRefGoogle Scholar
Brecke, B. J., Stephenson, D. O., and Unruh, J. B. 2010. Timing of oxadiazon and quinclorac applications on newly sprigged turfgrass species. Weed Technol. 24:2832.CrossRefGoogle Scholar
Bunnell, B. T., McCarty, L. B., Lowe, D. B., and Higingbottom, J. K. 2001. Kyllinga squamulata control in bermudagrass turf. Weed Technol. 15:310314.Google Scholar
Burton, G. W. 1991. A history of turf research at Tifton. USGA Green Section Record 29:1214.Google Scholar
Callahan, L. M. and High, J. W. 1990. Herbicide effects on bermudagrass lawn recovery and crabgrass control during spring root decline in the north-south transition zone. J. Am. Soc. Hort. Sci. 115:597601.Google Scholar
Capo-chichi, L. J. A., Goatley, J. M., Philley, W., Krans, J., Davis, D., Kato, A., and van Santen, E. 2005. Dinitroaniline-induced genetic changes in bermudagrass. Crop Sci. 45:15041510.Google Scholar
Clewis, S. B., Askew, S. D., and Wilcut, J. W. 2002. Economic assessment of diclosulam and flumioxazin in strip- and conventional-tillage peanut. Weed Sci. 50:378385.Google Scholar
Dernoeden, P. H., Christains, N. E., Krouse, J. M., and Roe, R. G. 1993. Creeping bentgrass rooting as influenced by dithiopyr. Agron. J. 85:560563.Google Scholar
Eleftherohorinos, I. G. and Dhima, K. V. 2002. Red rice (Oryza sativa) control in rice (O. sativa) with preemergence and postemergence herbicides. Weed Technol. 16:537540.Google Scholar
Fagerness, M. J., Yelverton, F. H., and Cooper, R. J. 2002. Bermudagrass (Cynodon dactylon (L.) Pers). and zoysiagrass (Zoysia japonica) establishment after preemergence herbicide applications. Weed Technol. 16:597602.Google Scholar
Ferrell, J. A., Murphy, T. R., and Vencill, W. K. 2003. Tolerance of winter-installed tall fescue (Festuca arundinacea) and hybrid bermudagrass (Cynodon transvaalensis × C. dactylon) sod to herbicides. Weed Technol. 17:521525.Google Scholar
Finney, S. B. 1991. Cellular responses of bentgrass and bermudagrass to selected preemergence herbicides. Weeds 15:128130.Google Scholar
Foy, J. H. 1991. Going for the gold with bermudagrass greens. USGA Green Section 29:14.Google Scholar
Fry, J. D., Dernoeden, P. H., and Murray, J. J. 1986. Establishment and rooting of zoysiagrass (Zoysia japonica) as affected by preemergence herbicides. Weed Sci. 34:413418.Google Scholar
Hanna, W. W. and Elsner, J. L. 1999. Registration of TifEagle bermudagrass. Crop Sci. 39:1258.Google Scholar
Hutchinson, P. J. S., Ransom, C. V., Boydston, R. A., and Beutler, B. R. 2005. Dimethenamid-p: efficacy and potato (Solanum tuberosum) variety tolerance. Weed Technol. 19:966971.Google Scholar
Johnson, B. J. 1980. Root growth of southern turf cultivars as affected by herbicides. Weed Sci. 28:526528.Google Scholar
Johnson, B. J. 1985. Response of four bermudagrass (Cynodon dactylon) cultivars to dates of oxadiazon treatments. Weed Sci. 33:371375.Google Scholar
McCarty, L. B. 1993. Tifway bermudagrass sprig establishment following preemergence herbicide use. Proc. South. Weed Sci. Soc. 46:102.Google Scholar
McCarty, L. B., Porter, D. W., and Colvin, D. L. 1995. Sod regrowth of St. Augustinegrass after preemergence herbicide application. Agron. J. 87:503507.CrossRefGoogle Scholar
McCullough, P. E., Whitwell, T., McCarty, L. B., and Liu, H. 2007. Dwarf bermudagrass tolerance to preemergence herbicides. HortScience 42:673677.Google Scholar
Poling, K. W., Renner, K. A., and Penner, D. 2009. Dry edible bean class and cultivar response to dimethenamid and metolachlor. Weed Technol. 23:7380.Google Scholar
Richardson, M. D., Karcher, D. E., and Purcell, L. C. 2001. Quantifying turfgrass cover using digital image analysis. Crop Sci. 41:18841888.Google Scholar
Sikkema, P. H., Robinson, D. E., Shropshire, C., and Soltani, N. 2006. Tolerance of otebo bean (Phaseolus vulgaris) to new herbicides in Ontario. Weed Technol. 20:862866.Google Scholar
Vasilakoglou, I. B. and Eleftherohorinos, I. G. 2003. Persistence, efficacy, and selectivity of amide herbicides in corn. Weed Technol. 17:381388.Google Scholar
Vaughn, K. C. and Lehnen, L. P. 1991. Mitotic disrupter herbicides. Weed Sci. 39:450457.Google Scholar
White, R. H. 1998. Performance and management of new dwarf bermudagrasses. 1998 Semi-Annual Research Progress Report. Texas Agriculture Experiment Station. Texas A &M Univ. P. 12.Google Scholar
White, R. H., Hale, T. C., Chalmers, D. R., Hall, M. H., Thomas, J. C., and Menn, W. G. 2004. Cultural management of selected ultradwarf bermudagrass cultivars. Crop Manag. DOI: 10.1094/CM-2004-0514-01-RS.CrossRefGoogle Scholar