Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T06:48:55.694Z Has data issue: false hasContentIssue false

Predicted Corn Yield Loss Due to Weed Competition Prior to Postemergence Herbicide Application on Wisconsin Farms

Published online by Cambridge University Press:  20 January 2017

Nathanael D. Fickett
Affiliation:
Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706
Chris M. Boerboom
Affiliation:
Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706
David E. Stoltenberg*
Affiliation:
Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706
*
Corresponding author's E-mail: [email protected]

Abstract

Approximately 50% of the genetically modified herbicide-resistant corn hectares in the United States are treated only with POST-applied herbicides for weed management. Although a high degree of efficacy can be obtained with POST-applied herbicides, delayed timing of application may result in substantial corn yield loss. Our goal was to characterize on-farm corn–weed communities prior to POST herbicide application and estimate potential corn-yield loss associated with early-season corn–weed competition. In 2008 and 2009, field surveys were conducted across 95 site-years in southern Wisconsin and recorded weed species, density, and height in addition to crop height, growth stage, and row spacing. WeedSOFT® was used to predict corn yield loss. Common lambsquarters, velvetleaf, dandelion, common ragweed, and Amaranthus species were the five most abundant broadleaf weed species across site-years, present in 92, 86, 59, 45, and 44% of all fields, respectively, at mean densities of 19, 3, 3, 4, and 3 plants m−2, respectively. Mean plant heights among these species were 17 cm or less. Grass and sedge species occurred in 96% of fields at a mean density of 25 plants m−2 and height of 7 cm. The mean and median of total weed density across site-years were 96 and 52 plants m−2, with heights of 14 and 13 cm, respectively. Mean predicted corn yield loss was 4.5% with a mean economic loss of $62 ha−1. However, predicted yield loss was greater than 5% on one-third of the site-years, with a maximum of 26%. These results indicate that delayed application of POST herbicides has led to corn yield loss due to early-season weed-crop competition on a substantial number of fields across southern Wisconsin, and suggest that management tactics need to be improved to protect corn yield potential fully.

Aproximadamente 50% de las hectáreas de maíz genéticamente modificado con resistencia a herbicidas en los Estados Unidos son tratados solamente con herbicidas aplicados POST para el manejo de malezas. Aunque un alto grado de eficacia puede ser obtenido con aplicaciones de herbicidas POST, atrasos en el momento de aplicación pueden resultar en pérdidas sustanciales en el rendimiento del maíz. Nuestro objetivo fue caracterizar las comunidades de maíz-malezas en fincas antes de las aplicaciones de herbicidas POST y estimar el potencial de pérdida en rendimiento del maíz asociado con la competencia temprana entre el maíz y las malezas. En 2008 y 2009, se realizaron evaluaciones de campo en 95 sitios-años en el sur de Wisconsin y se determinó las especies de malezas, densidad, y altura además de altura, estado de desarrollo y espacio entre hileras del cultivo. WeedSOFT® fue usado para predecir las pérdidas en rendimiento del maíz. Chenopodium album, Abutilon theophrasti, Taraxacum officinale, Ambrosia artemisiifolia y especies de Amaranthus fueron las cinco especies de malezas de hoja ancha más abundantes a lo largo de los sitios-años, y estuvieron presentes en 92, 86, 59, 45 y 44% de todos los campos, respectivamente, con densidades promedio de 19, 3, 3, 4 y 3 plantas m−2, respectivamente. La altura promedio de estas especies fue 17 cm o menos. Especies de gramíneas o ciperáceas se encontraron en 96% de los campos a densidades promedio de 25 plantas m−2 y altura de 7 cm. El promedio y la media de la densidad de malezas total en todos los sitios-años fue 96 y 52 plantas m−2, con alturas de 14 y 13 cm, respectivamente. El promedio pronosticado de pérdida en el rendimiento del maíz fue 4,5% con una pérdida económica promedio de $62 ha−1. Sin embargo, la pérdida de rendimiento pronosticada fue mayor a 5% en un tercio de los sitios-años, con un máximo de 26%. Estos resultados indican que atrasos en la aplicación de herbicidas POST ha llevado a pérdidas en rendimiento del maíz debido a competencia entre la maleza y el cultivo temprano durante la temporada en un número sustancial de campos a lo largo del sur de Wisconsin, y sugieren que las tácticas de manejo necesitan ser mejoradas para proteger el potencial productivo del maíz.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Louisiana State University, 104 M. B. Sturgis Hall, Baton Rouge, LA 70803.

Current address: North Dakota State University Extension Service, Department 7000, P.O. Box 6050, Fargo, ND 58108-6050.

References

Literature Cited

Ateh, C. M. and Harvey, R. G. 1999. Annual weed control by glyphosate in glyphosate resistant soybean (Glycine max). Weed Technol. 13 :394398.Google Scholar
Bennett, A. C., Price, A. J., Sturgill, M. C., Buol, G. S., and Wilkerson, G. G. 2003. HADSSTM, Pocket HerbTM, and WebHADSSTM: decision aids for field crops. Weed Technol. 17 :412420.Google Scholar
Berti, A., Bravin, F., and Zanin, G. 2003. Application of decision-support software for postemergence weed control. Weed Sci. 51 :618627.Google Scholar
Bollman, J. D., Boerboom, C. M., Becker, R. L., and Fritz, V. A. 2008. Efficacy and tolerance to HPPD-inhibiting herbicides in sweet corn. Weed Technol. 22 :666674.Google Scholar
Canner, S. R., Wiles, L. J., Erskine, R. H., McMaster, G. S., Dunn, G. H., and Ascough, J. C. II. 2009. Modeling with limited data: the influence of crop rotation and management on weed communities and crop yield loss. Weed Sci. 57 :175186.Google Scholar
Carey, J. B. and Kells, J. J. 1995. Timing of total postemergence herbicide applications to maximize weed control and corn (Zea mays) yield. Weed Technol. 9 :356361.Google Scholar
Chikoye, D. and Ekeleme, F. 2003. Cover crops for cogongrass (Imperata cylindrica) management and effects on subsequent corn yield. Weed Sci. 51 :792797.Google Scholar
Cullen, E., Davis, V., Esker, P., Jensen, B., and Renz, M. 2011. Pest Management in Wisconsin Field Crops: 2012. Madison, WI : University of Wisconsin Extension. Pp. 252255.Google Scholar
Dalley, C. D., Bernards, M. L., and Kells, J. J. 2006. Effect of weed removal timing and row spacing on soil moisture in corn (Zea mays). Weed Technol. 20 :399409.Google Scholar
Dalley, C. D., Kells, J. J., and Renner, K. A. 2004. Effect of glyphosate application timing and row spacing on corn (Zea mays) and soybean (Glycine max) yields. Weed Technol. 18 :165176.Google Scholar
DeFelice, M. S. 2001. Shepherd's-purse, Capsella bursa-pastoris (L.) Medic. Weed Technol. 15 :892895.Google Scholar
Forcella, F., King, R. P., Swinton, S. M., Buhler, D. D., and Gunsolus, J. L. 1996. Multi-year validation of a decision aid for integrated weed management in row crops. Weed Sci. 44 :650661.Google Scholar
Frick, B. and Thomas, A. G. 1992. Weed surveys in different tillage systems in southwestern Ontario field crops. Can. J. Plant Sci. 72 :13371347.Google Scholar
Givens, W. A., Shaw, D. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordan, D. 2009. A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol. 23 :156161.Google Scholar
Gower, S. A., Loux, M. M., Cardina, J., Harrison, S. K., Sprankle, P. L., Probst, N. J., Bauman, T. T., Bugg, W., Curran, W. S., Currie, R. S., Harvey, R. G., Johnson, W. G., Kells, J. J., Owen, M. D. K., Regehr, D. L., Slack, C. H., Spaur, M., Sprague, C. L., Vangessel, M., and Young, B. G. 2003. Effect of postemergence glyphosate application timing on weed control and grain yield in glyphosate-resistant corn: results of a 2-yr multistate study. Weed Technol. 17 :821828.Google Scholar
Green, J. M. 2009. Evolution of glyphosate-resistant crop technology. Weed Sci. 57 :108117.Google Scholar
Gulden, R. H., Sikkema, P. H., Hamill, A. S., Tardif, F., and Swanton, C. J. 2009. Conventional vs. glyphosate-resistant cropping systems in Ontario: weed control, diversity, and yield. Weed Sci. 57 :665672.Google Scholar
Halford, C., Hamill, A. A., Zhang, J., and Doucet, C. 2001. Critical period of weed control in no-till soybean (Glycine max) and corn (Zea mays). Weed Technol. 15 :737744.Google Scholar
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci. 40 :441447.Google Scholar
Hock, S. M., Knezevic, S. Z., Johnson, W. G., Sprague, C., and Martin, A. R. 2007. WeedSOFT: effects of corn-row spacing for predicting herbicide efficacy on selected weed species. Weed Technol. 21 :219224.Google Scholar
Isik, D., Mennen, H., Bukun, B., Oz, A., and Ngouajio, M. 2006. The critical period for weed control in corn in Turkey. Weed Technol. 20 :867872.Google Scholar
Jeschke, M. R., Stoltenberg, D. E., Kegode, G. O., Dille, J. A., and Johnson, G. A. 2009. Weed community emergence time affects accuracy of predicted corn yield loss by WeedSOFT. Weed Technol. 23 :477485.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1996. Control of annual weeds with glyphosate. Weed Technol. 10 :957962.Google Scholar
Loux, M. M., Dobbels, A. F., Johnson, W. G., and Young, B. G. 2011. Effect of residual herbicide and postemergence application timing on weed control and yield in glyphosate-resistant corn. Weed Sci. 25 :1924.Google Scholar
McCully, K. V., Sampson, M. G., and Watson, A. K. 1991. Weed survey of Nova Scotia lowbush blueberry (Vaccinium angustifolium) fields. Weed Sci. 39 :180185.Google Scholar
Myers, M. W., Curran, W. S., Vangessel, M. J., Majek, B. A., Scott, B. A., Mortensen, D. A., Calvin, D. D., Karsten, H. D., and Roth, G. W. 2005. The effect of weed density and application timing on weed control and corn grain yield. Weed Technol. 19 :102107.Google Scholar
[NOAA-NCDC] National Oceanic and Atmospheric Administration–National Climatic Data Center. 2010. Coop data. http://www7.ncdc.noaa.gov/IPS/coop/coop.html. Accessed: June 2010.Google Scholar
Neeser, C., Dille, J. A., Krishnan, G., Mortensen, D. A., Rawlinson, J. T., Martin, A. R., and Bills, L. B. 2004. WeedSOFT®: a weed management decision support system. Weed Sci. 52 :115122.Google Scholar
Norsworthy, J. K. and Oliveira, M. J. 2004. Comparison of the critical period for weed control in wide- and narrow-row corn. Weed Sci. 52 :802807.Google Scholar
Nurse, R. E., Swanton, C. J., Tardif, F., and Sikkema, P. H. 2006. Weed control and yield are improved when glyphosate is preceded by a residual herbicide in glyphosate-tolerant maize (Zea mays). Crop Prot. 25 :11741179.Google Scholar
Renner, K. A., Swinton, S. M., and Kells, J. J. 1999. Adaptation and evaluation of the WEEDSIM weed management model for Michigan. Weed Sci. 47 :338348.Google Scholar
Schmidt, A. A., Johnson, W. G., Mortensen, D. A., Martin, A. R., Dille, A., Peterson, D. E., Guza, C., Kells, J. J., Lins, R. D., Boerboom, C. M., Sprague, C. L., Knezevic, S. Z., Roeth, F. W., Medlin, C. R., and Bauman, T. T. 2005. Evaluation of corn (Zea mays L.) yield-loss estimations by WeedSOFT® in the North Central Region. Weed Technol. 19 :10561064.Google Scholar
So, Y. F., Williams, M. M. II, Pataky, J. K., and Davis, A. S. 2009. Principal canopy factors of sweet corn and relationships to competitive ability with wild-proso millet (Panicum miliaceum). Weed Sci. 57 :296303.Google Scholar
Steel, D.G.R. and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach. New York : McGraw-Hill. Pp. 550551.Google Scholar
Thomas, A. G. 1985. Weed survey system used in Saskatchewan for cereal and oilseed crops. Weed Sci. 33 :3443.Google Scholar
Thomas, A. G. and Dale, M. R. T. 1991. Weed community structure in spring-seeded crops in Manitoba. Can. J. Plant Sci. 71 :10691080.Google Scholar
Thomas, W. E., Pline-Srnic, W. A., Thomas, J. F., Edmisten, K. L., Wells, R., and Wilcut, J. W. 2004. Glyphosate negatively affects pollen viability but not pollination and seed set in glyphosate-resistant corn. Weed Sci 52 :725734.Google Scholar
Tukey, J. W. 1977. Exploratory Data Analysis. 1st ed. Reading, MA : Addison-Wesley. 688 p.Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service. 2008. Wisconsin: 2008 Acreage. Washington, DC : USDA. http://www.nass.usda.gov/Statistics_by_State/Wisconsin/Publications/Crops/acreage.pdf. Accessed March 1, 2009.Google Scholar
[USDA-NASS] U. S. Department of Agriculture–National Agricultural Statistics Service. 2009. Wisconsin: 2009 Acreage. Washington, DC : USDA. http://www.nass.usda.gov/Statistics_by_State/Wisconsin/Publications/Crops/acreage.pdf. Accessed March 17, 2010.Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service. 2011a. Acreage 2011. Washington, DC : USDA. http://usda01.library.cornell.edu/usda/nass/Acre//2010s/2011/Acre-06-30-2011.pdf. Accessed May 10, 2012.Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service. 2011b. 2011 Wisconsin Agricultural Statistics Bulletin. Washington, DC : USDA. http://www.nass.usda.gov/Statistics_by_State/Wisconsin/Publications/Annual_Statistical_Bulletin/bulletin2011_web.pdf. Accessed Nov 30, 2011.Google Scholar
[USDA-NASS] U. S. Department of Agriculture – National Agricultural Statistics Service. 2011c. Custom rate guide 2010. Washington, DC: USDA, http://www.nass.usda.gov/Statistics_by_State/Wisconsin/Publications/custom_rates_2010.pdf. Accessed June 3, 2012.Google Scholar
[USDA-NASS] U. S. Department of Agriculture–National Agricultural Statistics Service. 2012a. Wisconsin—Crop Production. Washington, DC : USDA. http://www.nass.usda.gov/Statistics_by_State/Wisconsin/Publications/Crops/crop_prod_ann.pdf. Accessed June 3, 2012.Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service. 2012b. Wisconsin Crop Production Values. Washington, DC : USDA. http://www.nass.usda.gov/Statistics_by_State/Wisconsin/Publications/Crops/cpvalue.pdf. Accessed June 3, 2012.Google Scholar
Van Acker, R. C., Thomas, A. G., Leeson, J. Y., Knezevic, S. Z., and Frick, B. L. 2000. Comparison of weed communities in Manitoba ecoregions and crops. Can. J. Plant Sci. 80 :963972.Google Scholar
Wilkerson, G. G., Wiles, L. J., and Bennett, A. C. 2002. Weed management decision models: pitfalls, perceptions, and possibilities of the economic threshold approach. Weed Sci. 50 :411424.Google Scholar
Williams, M. M. II, Rabaey, T. L., and Boerboom, C. M. 2008. Residual weeds of processing sweet corn in the north central region. Weed Technol. 22 :646653.Google Scholar