Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T22:39:17.778Z Has data issue: false hasContentIssue false

Pre- and Postemergence Herbicides for Row Middle Weed Control in Vegetable Plasticulture Production Systems

Published online by Cambridge University Press:  23 February 2017

Nathan S. Boyd*
Affiliation:
University of Florida, IFAS, Gulf Coast Research and Education Center, Horticultural Sciences Department, 14625 CR 672, Balm, FL 33598. Author's E-mail: [email protected]

Abstract

In plasticulture vegetable production systems, broadleaf weeds and grasses emerge in the crop planting holes and between the raised beds. Weeds emerging on the bare ground between the raised beds can be the most difficult to control. Experiments were conducted in the spring and fall of 2014 at the Gulf Coast Research and Education Center in Balm, FL, to evaluate a range of herbicides for use in row middles in vegetable crops. Weed counts and control ratings did not differ over time and as a result are averaged across 2, 4, and 8 wk after treatment. In the absence of PRE herbicides, carfentrazone did not differ from the nontreated control, whereas paraquat reduced total weed density by 67 and 61% in the spring and fall, respectively. In the fall, carfentrazone tank-mixed with flumioxazin, S-metolachlor + flumioxazin, or paraquat tank-mixed with flumioxazin, S-metolachlor, metribuzin, or S-metolachlor + flumioxazin had 81 to 90% fewer broadleaf weeds than the nontreated control. Total weed density was 70 to 90% lower than the nontreated control when carfentrazone was tank-mixed with flumioxazin or S-metolachlor + flumioxazin or paraquat was tank-mixed with flumioxazin, S-metolachlor, oxyfluorfen, metribuzin or S-metolachlor + flumioxazin. Similar trends occurred in the spring. A tank mix of a soil residual herbicide and POST burn-down herbicides tended to have a greater reduction in weed numbers compared to the POST treatment alone. The most consistent row middle tank-mixes were paraquat tank-mixed with flumioxazin, S-metolachlor + flumioxazin, or S-metolachlor + oxyfluorfen.

En los sistemas de producción de vegetales con plasticultura, las malezas de hoja ancha y las gramíneas emergen en los orificios donde se planta el cultivo y entre las camas de siembra. Las malezas que emergen en el suelo desnudo entre las camas de siembra pueden ser las más difíciles de controlar. Se realizaron experimentos en la primavera y el otoño de 2014 en el Centro de Investigación y Educación de la Costa del Golfo en Balm, Florida, para evaluar un grupo de herbicidas para uso en el área entre las camas de siembra en cultivos de vegetales. Los conteos de malezas y las evaluaciones de control no difirieron a lo largo del tiempo, por lo que se promedió el resultado de las evaluaciones a 2, 4, y 8 semanas después del tratamiento. En ausencia de herbicidas PRE, carfentrazone no fue diferente del testigo sin tratamiento, mientras que paraquat redujo la densidad total de malezas en 67 y 61% en la primavera y el otoño, respectivamente. En el otoño, carfentrazone mezclado en tanque con flumioxazin, S-metolachlor + flumioxazin, o paraquat mezclado en tanque con flumioxazin, S-metolachlor, metribuzin, o S-metolachlor + flumioxazin tuvieron 81 a 90% menos malezas de hoja ancha que el testigo sin tratamiento. La densidad total de malezas fue 70 a 90% menor que el testigo sin tratamiento cuando carfentrazone fue mezclado en tanque con flumioxazin o S-metolachlor + flumioxazin o cuando paraquat fue mezclado con flumioxazin, S-metolachlor, oxyfluorfen, metribuzin o S-metolachlor + flumioxazin. Tendencias similares ocurrieron en la primavera. Una mezcla en tanque de un herbicida residual y herbicidas POST para la quema total de vegetación tendió a tener una reducción mayor en el número de malezas al compararse con tratamientos de sólo herbicidas POST. Las mezclas en tanque más consistentes para tratamiento del área entre camas de siembra fueron paraquat mezclado con flumioxazin, S-metolachlor + flumioxazin, o S-metolachlor + oxyfluorfen.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adcock, CW, Foshee WG, III, Wehtje, GR, Gilliam, CH (2008) Herbicide combinations in tomato to prevent nutsedge (Cyperus esculentus) punctures in plastic mulch for multi-cropping systems. Weed Technol 22: 136141 Google Scholar
Alister, CA, Gomez, PA, Rojas, S, Kogan, M (2009) Pendimethalin and oxyfluorfen degradation under two irrigation conditions over four years application. J Environ Sci Health 44: 337343 Google Scholar
Bedford, ID, Kelly, A, Banks, GK, Briddon, RW, Cenis, JL, Markham, PG (1998) Solanum nigrum: an indigenous weed reservoir for a tomato yellow leaf curl geminivirus in southern Spain. Eur J Plant Pathol 104: 221222 Google Scholar
Bonanno, AR (1996) Weed management in plasticulture. HortTechnol 6: 186189 Google Scholar
Boyd, NS (2015) Evaluation of preemergence herbicides for purple nutsedge (Cyperus rotundus) control in tomato. Weed Technol 29: 480487 Google Scholar
Clewis, SB, Everman, WJ, Jordan, DL, Wilcut, JW (2007) Weed management in North Carolina peanuts (Arachis hypogaaea) with S-metolachlor, diclosulam, flumioxazin, and sulfentrazone systems. Weed Technol 21: 629635 Google Scholar
Dittmar, PJ (2013) Weed control strategies in tomato. The Florida Tomato Proceedings. P 24. http://swfrec.ifas.ufl.edu/docs/pdf/veg-hort/tomato-institute/proceedings/ti13_proceedings.pdf. Accessed June 2014.Google Scholar
Everman, WJ, Clewis, SB, York, AC, Wilcut, JW (2009) Weed control and yield with flumioxazin, and S-metolachlor systems for glufosinate-resistant cotton residual weed management. Weed Technol 23: 391397 Google Scholar
Fennimore, SA, Doohan, DJ (2008) The challenges of specialty crop weed control, future directions. Weed Technol 22: 364372 Google Scholar
Ferrell, JA, Vencill, WK (2003) Flumioxazin soil persistence and mineralization in laboratory experiments. J Agric Food Chem 57: 47194721 Google Scholar
Freeman, S, Gnayem, N (2005) Use of plasticulture for strawberry plant production. Small Fruits Rev 4: 2132 Google Scholar
French-Monar, RD, Jones, JB, Roberts, PD (2006) Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Dis 90: 345350 Google Scholar
Gilreath, JP, Santos, BM (2004) Efficacy of methyl bromide alternatives on purple nutsedge (Cyperus rotundus) control in tomato and pepper Weed Technol 18: 341345 Google Scholar
Gilreath, JP, Santos, BM, Motis, TN, Noling, JW, Mirusso, JM (2005) Methyl bromide alternatives for nematode and Cyperus control in bell pepper (Capsicum annuum). Crop Prot 24: 903908 Google Scholar
Gilreath, JP, Stall, WM, Locascio, SJ (1987) Weed control in tomato row middles. Proc Fla State Hort Soc 100: 232236 Google Scholar
Grey, TL, Bridges, DC, Prostko, EP, Easin, EF, Johnson, WC, Vencill, WK, Brecke, BJ, MacDonald, GE, Ducar, JAT, Everest, JW, Wehtje, GR, Wilcut, JW (2003) Residual weed control with imazapic, diclosulam, and flumioxazin in southeastern peanut (Arachis hypogaea). Peanut Sci 30: 2734 Google Scholar
Haar, MJ, Fennimore, SA, McGiffen, ME, Lanini, WT, Bell, CE (2002) Evaluation of preemergence herbicides in vegetable crops. HortTechnol 12: 9599 Google Scholar
Jhala, AJ, Ramirez, AHM, Singh, M (2012) Rimsulfuron tank mixed with flumioxazin, pendimethalin, or oryzalin for control of broadleaf weeds in citrus. HortTechnol 22: 638643 Google Scholar
Klose, S, Ajwa, HA, Browne, GT, Subbarao, KV, Martin, FN, Fennimore, SA, Westerdahl, BB (2008) Dose response of weed seeds, plant parasitic nematodes, and pathogens to twelve rates of metam sodium in California soil. Plant Dis 92: 15371546 Google Scholar
Lament, WJ Jr (1993) Plastic mulches for the production of vegetable crops. HortTechnol 3: 3539 Google Scholar
Manning, GR, Fennimore, SA (2001) Evaluation of low-rate herbicides to supplement methyl bromide alternative fumigants to control weeds in strawberry. HortTechnol 11: 603609 Google Scholar
Obrigawitch, T, Abernathy, JR, Gipson, JR (1980) Response of yellow (Cyperus esculentus) and purple (Cyperus rotundus) nutsedge to metolachlor. Weed Sci 28: 708715 Google Scholar
Pannacci, E, Graziani, F, Covarelli, G (2007) Use of herbicide mixtures for pre and post-emergence weed control in sunflower (Helianthus annuus). Crop Prot 26: 11501157 Google Scholar
Rich, JR, Brito, JA, Kaur, R, Ferrell, JA (2008) Weed species as hosts of Meloidogyne: a review. Nematropica 39: 157185.Google Scholar
Samtani, JB, Weber, JB, Fennimore, SA (2012) Tolerance of strawberry cultivars to oxyfluorfen and flumioxazin herbicides. HortSci 47: 848851 Google Scholar
[USDA] US Department of Agriculture (2015) Vegetables 2014 Summary. Washington, DC: US Department of Agriculture. P 83 Google Scholar
Vallad, GE, Freeman, JH, Dittmar, PJ (2015) Vegetable & Small Fruit Production Handbook, 2014–2015. 19th edn. Gainesville, FL: University of Florida, Vance Publishing. 248 pGoogle Scholar
Walker, HL (1981) Fusarium lateritium: a pathogen of spurred anoda (Anoda cristata), prickly sida (Sida spinosa) and velvetleaf (Abutilon theophrasti). Weed Sci 29: 629631 Google Scholar
Williams, BJ, Miller, DK (2007) Cool-season weed response to flumioxazin. Crop Manage 6: 1 Google Scholar
Wisler, GC, Norris, RF (2005) Interactions between weeds and cultivated plants as related to management of plant pathogens. Weed Sci 53: 914917 Google Scholar
Zimdahl, RL, Catizone, P, Butcher, AC (1984) Degradation of pendimethalin in soil. Weed Sci 32: 408412 Google Scholar