Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T21:25:38.319Z Has data issue: false hasContentIssue false

Postharvest Tillage Reduces Downy Brome (Bromus tectorum L.) Infestations in Winter Wheat

Published online by Cambridge University Press:  20 January 2017

Frank L. Young*
Affiliation:
USDA-ARS, Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420, Pullman, WA 99164-6420
Alex G. Ogg Jr.
Affiliation:
USDA-ARS, Ten Sleep, WY 82442
J. Richard Alldredge
Affiliation:
Department of Statistics (retired), Washington State University, P.O. Box 643144, Pullman, WA 99164-3144
*
Corresponding author's E-mail: [email protected].

Abstract

In the Pacific Northwest, downy brome continues to infest winter wheat, especially in low-rainfall areas where the winter wheat–summer fallow rotation is the dominant production system. In Washington, a study was conducted for 2 yr at two locations in the winter wheat–summer fallow region to determine the influence of four postharvest tillage treatments on vertical seed movement, seedbank depletion, and plant densities of downy brome. The four tillage implements included a disk, sweep plow, harrow, and skew treader. The study also included a no-till treatment for comparison. The sweep plow and disk led to the most vertical movement of downy brome seed compared with the no-till treatment. Approximately 75% of the fall postharvest seed in the no-till treatment was located either on the soil surface or in the 0- to 3-cm depth at both locations. In contrast, 75% of the seed in the disked treatment was located from 0 to 6 cm deep at both locations. The disk and sweep plow both decreased downy brome seed in the soil at the 0- to 3-cm depth compared with the harrow and no-till treatments. There was no difference in downy brome plant densities following postharvest tillage in the summer fallow due to any of the treatments. However, plant densities in the subsequent winter wheat crop were reduced by the disk and sweep plow compared with the no-till and skew-treader treatments. In general, seed densities as affected by the skew treader fell between the disk and the no-till treatments. The use of the sweep plow and the disk should be integrated into a weed management strategy for downy brome in the wheat–fallow region of the Pacific Northwest.

En el Pacífico Noroeste, Bromus tectorum continúa infestando campos de trigo de invierno, especialmente en áreas con baja precipitación donde la rotación de trigo de invierno y barbecho de verano es el sistema dominante de producción. En Washington, se realizó un estudio por 2 años, en dos localidades en la región de rotación trigo de invierno y barbecho en verano, para determinar la influencia de cuatros tratamientos de labranza pos-cosecha sobre el movimiento vertical de la semilla, agotamiento del banco de semillas, y la densidad de plantas de B. tectorum. Los cuatro implementos de labranza fueron una rastra de discos, un cultivador de cuchilla, un cultivador de cincel, y un cultivador rotativo de dientes oblicuos. El estudio también incluyó un tratamiento de labranza cero para fines de comparación. El cultivador de cuchilla y la rastra de discos produjo el mayor movimiento vertical de semilla de B. tectorum al compararse con el tratamiento de labranza cero. Después de la cosecha en el otoño, aproximadamente 75% de la semilla en el tratamiento de labranza cero se localizó en la superficie del suelo o a una profundidad de 0 a 3 cm en ambas localidades. En cambio, 75% de la semilla en el tratamiento de rastra de discos se localizó de 0 a 6 cm de profundidad en ambas localidades. La rastra de discos y el cultivador de cuchillas disminuyeron la semilla de B. tectorum en el suelo de 0 a 3 cm de profundidad al compararse con los tratamientos de cultivador de cincel y la labranza cero. No hubo diferencia en la densidad de plantas de B. tectorum después de la labranza pos-cosecha en el barbecho de verano producto de los tratamientos. Sin embargo, la densidad de plantas en el siguiente cultivo de trigo de invierno se redujo con la rastra de discos y el cultivador de cuchillas al compararse con los tratamientos de labranza cero y el cultivador rotativo de dientes oblicuos. En general, la densidad de semillas producto del cultivador de dientes oblicuos estuvo entre los tratamientos de rastra de discos y la labranza cero. El uso del cultivador de cuchillas y la rastra de discos debería integrarse a estrategias de manejo de B. tectorum en la región de Pacífico Noroeste donde se tiene la rotación trigo-barbecho.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, RL (1998a) Ecological characteristics of three winter annual grasses. Weed Technol 12:478483 CrossRefGoogle Scholar
Anderson, RL (1998b) Seeding emergence of winter annual grasses as affected by limited tillage and crop canopy. Weed Technol 12:262267 CrossRefGoogle Scholar
Chepil, WA (1946) Germination of weed seeds. 1. Longevity, periodicity of germination, and viability of seeds in cultivated soils. Sci Agr 26:307346 Google Scholar
Duncan, CA, Jachetta, JJ, Brown, ML, Carrithers, VF, Clark, JK, DiTomaso, JM, Lym, RG, McDaniel, KC, Renz, MJ, Rice, PM (2004) Assessing the economic, environmental, and societal losses from invasive plants on rangeland and wildlands. Weed Technol 18:14111416 CrossRefGoogle Scholar
Gleichsner, JA, Appleby, AP (1989) Effect of depth and duration of seed burial on ripgut brome (Bromus rigidus). Weed Sci 37:6872 CrossRefGoogle Scholar
Gollany, HT, Allmaras, RR, Copeland, SM, Albrecht, SL, Douglas, CL Jr. (2005) Tillage and nitrogen fertilizer influence on carbon and silica distribution in a mollisol of the Pacific Northwest. Soil Sci Soc Am J 69:11021109 CrossRefGoogle Scholar
Hulbert, LC (1955) Ecological studies of Bromus tectorum and other annual bromegrasses. Ecol Monogr 25:181213 CrossRefGoogle Scholar
Hull, AC, Hansen, WT Jr. (1974) Delayed germination of cheatgrass seed. J Range Manage 27:366368 CrossRefGoogle Scholar
Kettler, TA, Lyon, DJ, Doran, JW, Powers, WL, Stroup, WW (2000) Soil quality assessment after weed-control tillage in a no-till wheat–fallow cropping system. Soil Sci Soc Am J 64:339346 CrossRefGoogle Scholar
Kovach, DA, Thill, DC, Young, FL (1988) A water-spray system for removing seed from soil. Weed Technol 2:338341 CrossRefGoogle Scholar
Mack, RN (1981) Invasion of Bromus tectorum L into Western North America—an ecological chronicle. Agro-Ecosyst 7:145165 CrossRefGoogle Scholar
Mohler, CL, Frisch, JC, McCulloch, CE (2006) Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil Till Res 86:110122 CrossRefGoogle Scholar
Roberts, HA (1981) Seed banks in soils. Pages 155 in Coaker, TH, ed. Advances in Applied Biology VI. New York: Academic Google Scholar
Rydrych, DJ (1976) Downy Brome Seed Production as Influenced by Six Winter Wheat Cultivars. Portland, OR: Western Society for Weed Science Research Progress Rep. p 159 Google Scholar
Rydrych, DJ, Muzik, TJ (1968) Downy brome competition and control in dryland wheat. Agron. J 60:279280 Google Scholar
Stahlman, PW, Miller, SD (1990) Downy brome (Bromus tectorum) interference and economic thresholds in winter wheat (Triticum aestivum). Weed Sci 38:224228 CrossRefGoogle Scholar
Steinbauer, GP, Grigsby, BH (1957) Field and laboratory studies on the dormancy and germination of the seeds of chess (Bromus secalinus L.) and downy bromegrass (Bromus tectorum L.). Weeds 5:14 CrossRefGoogle Scholar
Thorne, ME, Young, FL, Pan, WL, Bafus, R, Alldredge, JR (2003) No-till spring cereal cropping systems reduce wind erosion potential in the wheat/fallow region of the pacific northwest. J Soil Water Conserv 58:250257 Google Scholar
Thorne, ME, Young, FL, Yenish, JP (2006) Cropping systems alter weed seed bank in Pacific Northwest, USA semi-arid wheat region. Crop Prot 26:11211134 CrossRefGoogle Scholar
Wicks, GA, Burnside, OC, Fenster, CR (1971) Influence of soil type and depth of planting on downy brome seed. Weed Sci 19:8286 CrossRefGoogle Scholar
Yenish, JP, Doll, JP, Buhler, DD (1992) Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci 40:429433 CrossRefGoogle Scholar
Yenish, J, Veseth, R, Ogg, A, Thill, D, Ball, D, Young, F, Gallandt, E, Morishita, D, Mallory-Smith, C, Wysocki, D, Gohlke, T (1998) Managing Downy Brome under Conservation Tillage Systems in the Inland Northwest Cropping Region. PNW Cooperative Extension Pub. PNW0509. 15 pGoogle Scholar
Young, FL, Thorne, ME (2004) Weed species dynamics and management in no-till and reduced-till fallow cropping systems for the semi-arid agricultural region of the Pacific Northwest, USA. Crop Prot 23:10971110 CrossRefGoogle Scholar
Young, JA, Evans, RA, Eckert, RE Jr. (1969) Population dynamics of downy brome. Weed Sci 17:2026 CrossRefGoogle Scholar