Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T16:56:53.789Z Has data issue: false hasContentIssue false

Postemergence Control of Glyphosate/Paraquat-Resistant Hairy Fleabane (Conyza bonariensis) in Tree Nut Orchards in the Central Valley of California

Published online by Cambridge University Press:  20 January 2017

Marcelo L. Moretti*
Affiliation:
Department of Plant Sciences MS4, University of California, One Shields Avenue, Davis, CA 95616
Anil Shrestha
Affiliation:
Department of Plant Science, California State University, 2415 E. San Ramon Ave, Fresno, CA 93740
Kurt J. Hembree
Affiliation:
University of California Cooperative Extension, 1720 S. Maple Ave., Fresno, CA 93702
Bradley D. Hanson
Affiliation:
Department of Plant Sciences MS4, University of California, One Shields Avenue, Davis, CA 95616
*
Corresponding author's E-mail: [email protected].

Abstract

Hairy fleabane is an important weed in orchards and vineyards of California. Populations of glyphosate-resistant (GR) and glyphosate-paraquat-resistant (GPR) hairy fleabane have been documented in California but very little information is available on the efficacy of other POST herbicides on these populations. Greenhouse and field experiments were conducted to evaluate the efficacy of several POST herbicides registered in almond orchards on GPR, GR, and glyphosate/paraquat-susceptible (GPS) hairy fleabane plants. Plants were treated at the 8- to 12-leaf stage in greenhouse experiments, and at the bolting to flowering stage in field experiments. A sequential application of glyphosate (1,100 g ae ha−1) followed by paraquat (500 g ai ha−1) 14 d later did not control the GPR plants in any of the studies, but was effective in controlling the GR and GPS plants. Glufosinate at 1,050 g ai ha−1 or saflufenacil at 48.8 g ai ha−1 resulted in 90% or greater control of all populations in all studies, whereas glyphosate (1,100 g ae ha−1) + 2,4-D (1,090 g ae ha−1) resulted in inconsistent control (58 to 100%). The GPR population was not resistant to other common POST herbicide modes of action used in California tree nut orchards, and glufosinate and saflufenacil can provide growers effective management options for hairy fleabane in these crops.

Conyza bonariensis es una maleza importante en plantaciones de frutales y viñedos de California. Poblaciones de C. bonariensis resistentes a glyphosate (GR) y resistentes a glyphosate/paraquat (GPR) han sido documentadas en California, pero hay poca información acerca de la eficacia de otros herbicidas POST en estas poblaciones. Experimentos de invernadero y de campo fueron realizados para evaluar la eficacia de varios herbicidas POST registrados para uso en plantaciones de almendra sobre plantas de C. bonariensis GPR, GR, y susceptibles a glyphosate/paraquat (GPS). Las plantas fueron tratadas en el estadio de 8 a 12 hojas, en los experimentos de invernadero, y en el estadio de producción del tallo floral a la floración, en los experimentos de campo. La aplicación secuencial de glyphosate (1,100 g ae ha−1) seguida de paraquat (500 g ai ha−1) 14 d más tarde, no controló a las plantas GPR en ninguno de los estudios, pero fue efectiva para el control de las plantas GR y GPS. Aplicaciones de glufosinate a 1,050 g ai ha−1 o saflufenacil a 48.8 g ai ha−1 resultaron en 90% de control o más para todas las poblaciones en todos los estudios, mientras que glyphosate (1,100 g ae ha−1) + 2,4-D (1,090 g ae ha−1) resultó en control inconsistente (58 a 100%). La población GPR no fue resistente a herbicidas de otros modos de acción comunes usados en plantaciones de árboles de nueces en California. Glufosinate y saflufenacil pueden brindar a los productores opciones efectivas para el manejo de C. bonariensis en estos cultivos.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, HJ (2006) Herbicide-resistant weeds: management tactics and practices. Weed Technol 20:793814 Google Scholar
Beckie, HJ (2011) Herbicide-resistant weed management: focus on glyphosate. Pest Manag Sci 67:10371048 Google Scholar
[CDFA] California Department of Food and Agriculture (2014) California Agricultural Production Statistics. http://www.cdfa.ca.gov/statistics/. Accessed November 22, 2014Google Scholar
[CDPR] California Department of Pesticide Regulation (2013) Summary of Pesticide Use Report Data. http://www.cdpr.ca.gov. Accessed November 7, 2013Google Scholar
Gressel, J (2002) Molecular Biology of Weed Control. 1st edn. New York: Taylor & Francis. 504 pGoogle Scholar
Heap, IM (2015) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed February 11, 2015Google Scholar
Herberich, E, Sikorski, J, Hothorn, T (2010) A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PloS One 5:e9788 Google Scholar
Hess, FD, Foy, CL (2000) Interaction of surfactants with plant cuticles. Weed Technol 14:807813 Google Scholar
Hothorn, T, Bretz, F, Westfall, P, Heiberger, RM, Schuetzenmeister, A (2014) Multcomp: Simultaneous Inference in General Parametric Models. http://cran.r-project.org/web/packages/multcomp/index.html. Accessed October 20, 2014Google Scholar
Lagator, M, Vogwill, T, Mead, A, Colegrave, N, Neve, P (2013) Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii . New Phytol 198:938945 Google Scholar
Micke, WC (1996) Almond Production Mannual. University of California - Division of Agricultural and Natural Resources Pub. No. 3364. Pp 294 Google Scholar
Moreira, M, Melo, M, Carvalho, S, Nicolai, M, Crhistoffoleti, P (2010) Alternative herbicides to control glyphosate-resistant biotypes of Conyza bonariensis and Conyza canadensis . Planta Daninha 28:167175 Google Scholar
Moretti, ML, Hanson, BD, Hembree, KJ, Shrestha, A (2013) Glyphosate resistance is more variable than paraquat resistance in a multiple-resistant hairy fleabane (Conyza bonariensis) population. Weed Sci 61:396402 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci 60 (Special Issue):3162 Google Scholar
Petersen, J, Hurle, K (2001) Influence of climatic conditions and plant physiology on glufosinate-ammonium efficacy. Weed Res 41:3139 Google Scholar
Ramos, DE (1997) Walnut Production Manual: University of California - Division of Agricultural and Natural Resources Pub. No. 3373. Pages 320 pGoogle Scholar
Richardson, R (1977) A review of foliar absorption and translocation of 2,4-D and 2,4,5-T. Weed Res 17:259272 Google Scholar
Savage, D, Borger, CP, Renton, M (2014) Orientation and speed of wind gusts causing abscission of wind-dispersed seeds influences dispersal distance. Funct Ecol 28:973981 Google Scholar
Shrestha, A, Hanson, BD, Hembree, KJ (2008a) Glyphosate-resistant hairy fleabane documented in the Central Valley. Calif Agric 62:116119 Google Scholar
Shrestha, A, Hembree, KJ, Wright, SD (2008b) Biology and Management of Horseweed and Hairy Fleabane in California. University of California - Division of Agricultural and Natural Resources Pub. No. 8314. Pages 9 pGoogle Scholar
Shrestha, A, Steinhauer, KM, Moretti, ML, Hanson, BD, Jasieniuk, M, Hembree, KJ, Wright, SD (2014) Distribution of glyphosate-resistant and glyphosate-susceptible hairy fleabane (Conyza bonariensis) in central California and their phenological development. J Pest Sci 87:201209 CrossRefGoogle Scholar
Travlos, IS, Chachalis, D (2010) Glyphosate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Technol 24:569573 Google Scholar
Urbano, JM, Borrego, A, Torres, V, Leon, JM, Jimenez, C, Dinelli, G, Barnes, J (2007) Glyphosate-resistant hairy fleabane (Conyza bonariensis) in Spain. Weed Technol 21:396401 Google Scholar
Walker, S, Boucher, L, Cook, T, Davidson, B, McLean, A, Widderick, M (2012) Weed age affects chemical control of Conyza bonariensis in fallows. Crop Prot 38:120 Google Scholar
Werth, J, Walker, S, Boucher, L, Robinson, G (2010) Applying the double knock technique to control Conyza bonariensis . Weed Biol Manag 10:18 Google Scholar