Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T22:03:36.011Z Has data issue: false hasContentIssue false

Possible Causes of Dry Pea Synergy to Corn

Published online by Cambridge University Press:  20 January 2017

Randy L. Anderson*
Affiliation:
USDA-ARS, 2923 Medary Avenue, Brookings, SD 57006
*
Corresponding author's E-mail address: [email protected]

Abstract

Dry pea improves corn yield and tolerance to weed interference compared with soybean, spring wheat, or canola as preceding crops. To understand this synergy between dry pea and corn, growth and nutrient concentration of corn were examined following dry pea or soybean in sequence. Each corn plot was split into weed-free and weed-infested subplots, with foxtail millet established at one density to provide uniform weed interference. Compared with soybean, dry pea improved corn grain yield 10% in weed-free conditions and corn tolerance to weed interference more than twofold. Dry pea synergy to corn in weed-free conditions was not related to differences in corn development, height, or nutrient status of corn seedlings. When foxtail millet was present, dry pea increased corn height and rate of development late in the growing season compared with soybean. Improved corn tolerance to weed interference was not related to seedling emergence or growth of foxtail millet, as these parameters did not vary with preceding crop. Other biological factors must be involved in dry pea synergy to corn.

El guisante mejora el rendimiento del maíz y su tolerancia a la interferencia de las malezas, comparado con la soya, el trigo de primavera y la colza usados como cultivos anteriores. Para entender la sinergia entre el guisante y el maíz, se examinó el crecimiento y la concentración de nutrientes del maíz sembrado secuencialmente después de guisante o soya. Cada parcela de maíz fue dividida en sub-parcelas: libre o infestada con malezas, con Setaria italica establecida a una sola densidad para proveer una interferencia uniforme de malezas. En comparación con la soya, el guisante mejoró el rendimiento en grano del maíz 10% en condiciones libres de malezas y la tolerancia del maíz a la interferencia de malezas incrementó en más de dos veces. La sinergia del guisante y el maíz en condiciones libres de malezas no estuvo relacionada a diferencias en el desarrollo del maíz, su altura o el estatus nutricional de las plántulas de maíz. Cuando S. italica estuvo presente, el guisante incrementó la altura del maíz y la tasa de desarrollo al final del ciclo de crecimiento en comparación con la soya. La mejor tolerancia del maíz a la interferencia de las malezas no estuvo relacionada a la emergencia de las plántulas o al crecimiento de S. italica, ya que estos parámetros no variaron con el cultivo anterior. Otros factores biológicos deben estar involucrados en la sinergia entre el guisante y el maíz.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anaya, A. L. 1999. Allelopathy as a tool in the management of biotic resources in agroecosystems. Crit. Rev. Plant Sci. 18:697739.Google Scholar
Anderson, R. L. 2005. Are some crops synergistic to following crops? Agron. J. 97:710.Google Scholar
Anderson, R. L. 2008. Diversity and no-till: keys for pest management in the U.S. Great Plains. Weed Sci. 56:141145.Google Scholar
Anderson, R. L. 2009a. Impact of preceding crop and cultural practices on rye growth in winter wheat. Weed Technol. 23:564568.Google Scholar
Anderson, R. L. 2009b. Corn yield is affected by its frequency in a rotation. Pages 100101 in Rauch, T. and Campbell, J., eds. Western Society of Weed Science Research Progress Reports. Las Cruces, NM Western Society of Weed Science.Google Scholar
Anderson, R. L. 2011a. Synergism: a rotational effect of improved growth efficiency. Adv. Agron. 112:205226.Google Scholar
Anderson, R. L. 2011b. Corn tolerance to weed interference varies with preceding crop. Weed Technol. 25:486491.Google Scholar
Auge, R. M. 2004. Arbuscular mycorrhizae and soil/plant relationships. Can. J. Plant Sci. 84:373381.Google Scholar
Bashan, Y. and de-Bashan, L. E. 2010. How the plant growth-promoting bacterium Azospirilium promotes plant growth—a critical assessment. Adv. Agron. 108:77131.Google Scholar
Bastianns, L., Kropff, M. J., Goudriaan, J., and van Laar, H. H. 2000. Design of weed management systems with a reduced reliance on herbicides poses new challenges and prerequisites for modeling crop–weed interactions. Field Crops Res. 67:161179.Google Scholar
Beck, D. L. 2011. Successful No-Till for the Central and Northern Plains. Dakota Lakes Research Farm. http://www.dakotalakes.com. Accessed: December 7, 2011.Google Scholar
Crookston, R. K., Kurle, J. E., Copeland, P. J., Ford, J. H., and Lueschen, W. E. 1991. Rotational cropping sequence affects yield of corn and soybean. Agron. J. 83:108113.Google Scholar
Dobbeleare, S., Vanderleyden, J., and Okon, Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22:107149.Google Scholar
Dore, T., Makowski, D., Malezieux, E., Munier-Jolain, N., Tchamitchian, M., and Tittonell, P. 2011. Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts, and knowledge. Eur. J. Agron. 34:197210.Google Scholar
Hamel, C. 2004. Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can. J. Soil Sci. 84:383395.Google Scholar
Hobbs, P. R. 2007. Conservation agriculture: what it is and why it is important for future sustainable food production? J. Agric. Sci. 145:127137.Google Scholar
Johnston, A. M., Clayton, G. W., and Miller, P. R. 2007. Introduction to pulse crop ecology in North America: impacts on environment, nitrogen cycle, soil biology, pulse adaptation, and human nutrition. Agron. J. 99:16821683.Google Scholar
Katsvairo, T., Cox, W. J., and van Es, H. 2002. Tillage and rotation effects on soil physical characteristics. Agron. J. 94:299304.Google Scholar
Kirkegaard, J., Christen, O., Krupinsky, J., and Layell, D. 2008. Break crops benefits in temperate wheat production. Field Crop Res. 107:185195.Google Scholar
Krupinsky, J. M., Bailey, K. L., McMullen, M. P., Gossen, B. D., and Turkington, T. K. 2002. Managing plant disease risk with diversified cropping systems. Agron. J. 94:198209.Google Scholar
Kumar, V., Mills, D. J., Anderson, J. D., and Mattoo, A. K. 2004. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc. Natl. Acad. Sci. U. S. A. 101:1053510540.Google Scholar
Lafond, G. P., May, W. E., Stevenson, F. C., and Derksen, D. A. 2006. Effects of tillage systems and rotations on crop production for a thin black chernozem in the Canadian prairies. Soil Till. Res. 89:232245.Google Scholar
Lambert, D. H., Baker, D. E., and Cole, H. Jr. 1979. The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Sci. Soc. Am. J. 43:976980.Google Scholar
Lupwayi, N. Z., Clayton, G. W., Hanson, K. G., Rice, W. A., and Biederbeck, V. O. 2004. Endophytic rhizobia in barley, wheat and canola roots. Can. J. Plant Sci. 84:3745.Google Scholar
Przednowek, D. W., Entz, M. H., Irvine, B., Flaten, D. N., and Thiessen-Martens, J. R. 2004. Rotational yield and apparent N benefits of grain legumes in southern Manitoba. Can. J. Plant Sci. 84:10931096.Google Scholar
Riggs, P. J., Chelius, M. K., Iniquez, A. L., Kaeppler, S. M., and Triplett, E. W. 2001. Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust. J. Plant Physiol. 28:829836.Google Scholar
Sturz, A. V. and Chrisite, B. R. 2003. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Till. Res. 72:107123.Google Scholar
Swinton, S. M., Lupi, F., Robertson, G. P., and Hamilton, S. K. 2007. Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. 2007. Ecol. Econ. 64:245252.Google Scholar
Teasdale, J. R. and Mohler, C. L. 2000. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 48:385392.Google Scholar
Vereijken, R. 2002. Transition to multifunctional land use and agriculture. Netherlands J. Agric. Sci. 50:171179.Google Scholar