Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T05:17:13.838Z Has data issue: false hasContentIssue false

Photosystem II Inhibitor Resistance in the Columbia Basin of Washington State

Published online by Cambridge University Press:  20 January 2017

John F. Spring*
Affiliation:
Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420
Rick A. Boydston
Affiliation:
Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420
Ian C. Burke
Affiliation:
Agricultural Research Service, U.S. Department of Agriculture, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
*
Corresponding author's E-mail: [email protected]

Abstract

Weed management in potato and mint rely heavily on two Group 5 photosystem II–inhibiting herbicides, metribuzin and terbacil, respectively. Seed from weed escapes was collected in 2010 from 69 potato and mint production fields in Washington State and tested for resistance to metribuzin and terbacil. Of the seed screened, 26 of 51 Powell amaranth and redroot pigweed accessions and 8 of 23 common lambsquarters accessions tested expressed at least some degree of resistance to one or both herbicides. A Ser264Gly mutation in the chloroplast psbA gene was present in all but three resistant accessions. Herbicides with other mechanisms of action registered in potato and mint controlled all identified photosystem II–resistant accessions when applied at typical labeled rates.

El manejo de malezas en papa y menta depende fuertemente de metribuzin y terbacil, los cuales son dos herbicidas del Grupo 5 inhibidores del fotosistema II. Se colectó semilla de escapes de malezas en 2010 en 69 campos de producción de papa y menta en el estado de Washington y se evaluó la resistencia a metribuzin y terbacil. De las semillas evaluadas, 26 de 51 accesiones de Amaranthus powellii y Amaranthus retroflexus y 8 de 23 accesiones de Chenopodium album expresaron al menos algún grado de resistencia a uno o ambos herbicidas. Una mutación Ser264Gly en el gen psbA del cloroplasto estuvo presente en todas las accesiones excepto en tres. Los herbicidas con otros mecanismos de acción registrados en papa y menta controlaron todas las accesiones resistentes a la inhibición del fotosistema II cuando se aplicaron a las dosis típicas de la etiqueta.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Andrew Kniss, University of Wyoming.

References

Literature Cited

Aper, J, Mechant, E, De Riek, J, Van Laere, K, Bulcke, R, Reheul, D (2012) Analysis of local spread of metamitron-resistant Chenopodium album patches in Belgium. Weed Res 52: 421429 Google Scholar
Ahrens, WH, Max, LM, Stoller, EW (1981) Identification of triazine-resistant Amaranthus spp. Weed Sci 29: 345348 CrossRefGoogle Scholar
Beckie, HJ, Tardif, FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35: 1528 Google Scholar
Bellamkonda, M, Perez-Jones, A, Mallory-Smith, C (2009) Characterization of triazine-resistant Amaranthus spp. populations in the Pacific Northwest. Page 16 in Proceedings of the Western Society of Weed Science. Albuquerque, NM: Western Society of Weed Science Google Scholar
Boydston, RA, Al-Khatib, K (1992) Terbacil and bromacil cross-resistance in Powell amaranth (Amaranthus powellii). Weed Sci 40: 513516 Google Scholar
Eberlein, CV, Al-Khatib, K, Guttieri, JJ, Fuerst, EP (1992) Distribution and characteristics of triazine-resistant Powell amaranth (Amaranthus powellii) in Idaho. Weed Sci 40: 507512 Google Scholar
Eberlein, CV, Patterson, PE, Guttieri, MJ, Stark, JC (1997) Efficacy and economics of cultivation for weed control in potato (Solanum tuberosum). Weed Technol 11: 257264 CrossRefGoogle Scholar
Eleftherohorinos, IG, Vasilakglou, IB, Dhima, KV (2000) Metribuzin resistance in Amaranthus retroflexus and Chenopodium album in Greece. Weed Sci 48: 6974 Google Scholar
Ferguson, H, Walsh, D (2004) Pest Management Practices in Washington State Mint: A 2002 Survey, Washington State University, Extension Bulletin EB1989E. 4 pGoogle Scholar
Foes, M, Liu, L, Tranel, PJ, Wax, LM, Stoller, EW (1998) A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci 46: 514520 CrossRefGoogle Scholar
Gronwald, JW (1994) Resistance to photosystem II inhibiting herbicides. Pages 2760 in Powles, SB, Holtum, JAM, eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: CRC Google Scholar
Guenthner, JF, Wiese, MV, Pavlista, AD, Sieczka, JB, Wyman, J (1999) Assessment of pesticide use in the U.S. potato industry. Am J Potato Res 76: 2529 Google Scholar
Heap, IM (1994) Identification and documentation of herbicide resistance. Phytoprotection 75: 8590 Google Scholar
Heap, I. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed February 3, 2015 Google Scholar
Hess, D (2000) Light-dependent herbicides: an overview. Weed Sci 48: 160170 Google Scholar
Mengistu, LW, Mueller-Warrant, GW, Liston, A, Barker, RE (2000) psbA mutation (valine219 to isoleucine) in Poa annua resistant to metribuzin and diuron. Pest Manag Sci 56: 209217 Google Scholar
Monaco, TJ, Weller, SC, Ashton, FM (2002) Weed Science: Principles and Practices. 4th edn. New York: J. Wiley. Pp 219220 Google Scholar
[NASS] National Agricultural Statistics Service (2015a) 2014 Washington Annual Agricultural Bulletin. Olympia, WA: NASS Northwest Regional Field Office. 78 pGoogle Scholar
[NASS] National Agricultural Statistics Service (2015b) Agricultural Chemical Use Survey, Fall Potatoes. Publication No. 2015-2. http://www.nass.usda.gov/Surveys/Guide_to_NASS_; Surveys/Chemical_Use/ 2014_Potato_Highlights/index.asp#pesticide. Accessed January 15, 2015 Google Scholar
Oettmeier, W (1999) Herbicide resistance and supersensitivity in photosystem II. Cell Mol Life Sci 55: 12551277 Google Scholar
Park, KW, Mallory-Smith, CA (2006) psbA mutation (Asn266 to Thr) in Senecio vulgaris L. confers resistance to several PS II-inhibiting herbicides. Pest Manag Sci 62: 880885 Google Scholar
Pratt, DB, Owen, MD, Clark, LG, Gardner, A (1999) Identification of the Weedy Pigweeds and Waterhemps of Iowa. Iowa State University Extension Publication PM-1786. Ames, IA: Iowa State University. 19 pGoogle Scholar
Ritz, C, Streibig, JC (2005) Bioassay analysis using R. J Statist Software 12: 122 Google Scholar
Thiel, H, Kluth, C, Varrelmann, M (2010) A new molecular method for the rapid detection of a metamitron-resistant target site in Chenopodium album . Pest Manag Sci 66: 10111017 Google Scholar
Thiel, H, Varrelmann, M (2014) Identification of a new PSII target site psbA mutation leading to D1 amino acid Leu218 Val exchange in the Chenopodium album D1 protein and comparison to cross-resistance profiles of known modifications at positions 251 and 264. Pest Manag Sci 70: 278285 Google Scholar
Tian, X, Darmency, H (2006) Rapid bidirectional allele-specific PCR identification for triazine resistance in higher plants. Pest Manag Sci 62: 531536 Google Scholar
Vangessel, MJ, Renner, KA (1990) Redroot pigweed (Amaranthus retroflexus) and barnyardgrass (Echinochloa crus-galli) interference in potatoes (Solanum tuberosum). Weed Sci 38: 338343 Google Scholar
Wassom, JJ, Tranel, PJ (2005) Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species. J Hered 96: 410416 Google Scholar