Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T10:31:30.588Z Has data issue: false hasContentIssue false

Palmer Amaranth (Amaranthus palmeri) Management in GlyTol® LibertyLink® Cotton

Published online by Cambridge University Press:  20 January 2017

Jacob D. Reed*
Affiliation:
Texas A&M AgriLife Research, Lubbock, TX 79403
J. Wayne Keeling
Affiliation:
Texas A&M AgriLife Research, Lubbock, TX 79403
Peter A. Dotray
Affiliation:
Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409
*
Corresponding author's E-mail: [email protected].

Abstract

Field trials were conducted in Lubbock, TX in 2010 and 2011 to evaluate tank-mix combinations of glyphosate and glufosinate in GlyTol® LibertyLink® cotton for control of Palmer amaranth. Herbicide treatments included glyphosate and glufosinate applied at various tank-mix rate combinations (1X:1X, 1X:0.75X, 1X:0.5X, 1X:0.25X and 1X:0X of glyphosate plus glufosinate), proportional tank-mix rate combinations (1X:0X, 0.75X:0.25X, 0.5X:0.5X, 0.25X:0.75X, and 0X:1X of glyphosate plus glufosinate, where X is 0.84 kg ae ha−1 of glyphosate or 0.58 kg ai ha−1 of glufosinate ammonium), and in sequential (1X followed by 1X) applications of both herbicides in an overall weed management system. Greenhouse studies were conducted to quantify antagonistic or synergistic effects. Treatments included a nontreated control; glyphosate at 0.84, 0.63, 0.42, and 0.21 kg ha−1; glufosinate at 0.58, 0.44, 0.29, and 0.15 kg ha−1; and all tank-mix combinations of each herbicide rate. Dry weights were converted to percent growth values for each rate of the two herbicides alone, and these values were used to calculate expected responses of tank-mix combinations with the use of Colby's method. Expected values were compared to observed percent growth values using an augmented mixed-model method. Results of field studies indicated that tank mixes of glyphosate and glufosinate were less effective at controlling Palmer amaranth than glyphosate applied alone. The addition of any rate of glufosinate to a 1X rate of glyphosate reduced Palmer amaranth control compared to glyphosate alone. Greenhouse studies confirmed antagonism seen in the field. These results indicate that sequential applications of these two herbicides are a better option for Palmer amaranth weed management.

Se realizaron experimentos de campo en Lubbock, TX en 2010 y 2011 para evaluar combinaciones de mezclas en tanque de glyphosate y glufosinate en algodón GlyTol® LibertyLink® para el control de Amaranthus palmeri. Los tratamientos de herbicidas incluyeron glyphosate y glufosinate aplicados en varias combinaciones de dosis de mezclas en tanque (1X:1X, 1X:0.75X, 1X:0.25, y 1X:0X de glyphosate más glufosinate), combinaciones de dosis de mezclas en tanque proporcionales (1X:0X, 0.75X:0.25X, 0.5X:0.5X, 0.25X:0.75X, y 0X:1X de glyphosate más glufosinate, donde X es 0.84 kg ae ha−1 de glyphosate o 0.58 kg ai ha−1 de glufosinate ammonium), y en aplicaciones secuenciales (1X seguido de 1X) de ambos herbicidas en un sistema de manejo de malezas general. Se realizaron estudios de invernadero para cuantificar los efectos sinérgicos y antagónicos. Los tratamientos incluyeron un testigo no-tratado; glyphosate a 0.84, 0.63, 0.42, y 0.21 kg ha−1; glufosinate a 0.58, 0.44, 0.29, y 0.15 kg ha−1; y todas las combinaciones de mezcla en tanque de cada herbicida. Los pesos secos fueron convertidos a porcentaje de valores de crecimiento para cada dosis de los dos herbicidas solos, y estos valores fueron usados para calcular las respuestas esperadas de combinaciones de mezclas en tanque con el uso del método Colby. Los valores esperados fueron comparados a los porcentajes de crecimiento observados usando un método de modelo mixto. Los resultados de los experimentos de campo indicaron que las mezclas en tanque de glyphosate y glufosinate fueron menos efectivas para el control de A. palmeri que glyphosate aplicado solo. La adición de cualquier dosis de glufosinate a una dosis 1X de glyphosate redujo el control de A. palmeri al compararse con glyphosate solo. Los estudios de invernadero confirmaron el antagonismo visto en el campo. Estos resultados indican que las aplicaciones secuenciales de estos herbicidas son una mejor opción para el manejo de A. palmeri.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2002) Cotton Weed Database. http://www.cotton.org/tech/pest/upload/Cotton-Weed-Database.xls. Accessed March 14, 2012Google Scholar
Blouin, DC, Webster, EP, Bond, JA (2010) On a method of analysis for synergistic and antagonistic joint-action effects with fenoxaprop mixtures in rice (Oryza sativa). Weed Technol 24:583589 CrossRefGoogle Scholar
Brabham, CB, Johnson, WG (2010) Efficacy of Ignite and Flexstar tank mixtures on giant ragweed and common lambsquarters. Crop Manage http://www.plantmanagementnetwork.org/cm/element/sum2.aspx?id=9385 Accessed April 6, 2012Google Scholar
Byrd, JD Jr. (2003) Report of the 2002 Cotton Weed Loss Committee. Pages 22182222 in Proceedings of the Beltwide Cotton Conference. Memphis, TN National Cotton Council of America Google Scholar
Casella, G, Berger, RL (2002) Statistical Inference. Pacific Grove, CA: Duxbury. Pp 240245 Google Scholar
Chuah, TS, Teh, HH, Cha, TS, Ismail, BS (2008) Antagonism of glufosinate ammonium activity caused by glyphosate in the tank mixtures used for control of goosegrass (Eleusine indica Gaertn.). Plant Prot Quart 23:116119 Google Scholar
Coetzer, E, Al-Khatib, K, Loughin, TM (2001) Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci 49:813 CrossRefGoogle Scholar
Colby, SR (1967) Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:2022 CrossRefGoogle Scholar
Culpepper, AS, York, AC, Batts, RB, Jennings, KM (2000) Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max). Weed Technol 14:7788 CrossRefGoogle Scholar
Culpepper, AS, Webster, TM, Sosnoskie, LM, York, AC (2010) Glyphosate-resistant Palmer amaranth in the United States. Pages 203205 in Nandula, ED, ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ: Wiley Google Scholar
Everman, WJ, Burke, IC, Allen, JR, Collins, J, Wilcut, JW (2007) Weed control and yield with glufosinate-resistant cotton weed management systems. Weed Technol 21:695701 CrossRefGoogle Scholar
Everman, WJ, Clewis, SB, York, AC, and Wilcut, JW (2009) Weed control and yield with flumioxazin, fomesafen, and S-metolachlor systems for glufosinate-resistant cotton residual weed management. Weed Technol 23:391397 CrossRefGoogle Scholar
Hutchinson, PJS, Tonks, DJ, Beutler, BR (2003) Efficacy and economics of weed control programs in glyphosate-resistant potato (Solanum tuberosum). Weed Technol 17:854865 CrossRefGoogle Scholar
Kudsk, P, Mathiassen, SK (2004) Joint action of amino acid biosynthesis-inhibiting herbicides. Weed Res 44:313322 CrossRefGoogle Scholar
Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD, Schabenberger, O (2002) SAS for Mixed Models. 2nd ed. Cary, NC: SAS Institute. P 551 Google Scholar
[NASS] National Agricultural Statistics Service (2012a) USDA/NASS QuickStats Ad-hoc Query Tool. http://quickstats.nass.usda.gov/results/BE9277C1-84C7-3DA3-89B6-FC373AA3655D?pivot=short_desc. Accessed April 18, 2012Google Scholar
Neve, P, Norsworthy, JK, Smith, KL, Zelaya, IA (2011) Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in cotton. Weed Technol 25:335343 CrossRefGoogle Scholar
Norsworthy, JK, Oliver, LR (2002) Effect of irrigation, soybean (Glycine max) density, and glyphosate on hemp sesbania (Sesbania exaltata) and pitted morningglory (Ipomoea lacunosa) interference in soybean. Weed Technol 16:717 CrossRefGoogle Scholar
Saxton, AM (1998) A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246 in Proceedings of the 23rd Annual SAS Users Group International. Cary, NC: SAS Institute Inc. Google Scholar
Smith, DT, Baker, RV, Steele, GL (2000) Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol 14:122126 CrossRefGoogle Scholar
Steckel, GJ, Wax, LM, Simmons, FW, and Phillips, WH. (1997) Glufosinate efficacy on annual weeds is influenced by rate and growth stage. Weed Technol 11:484488 CrossRefGoogle Scholar
Stuart, BL, Harrison, SK, Abernathy, JR, Krieg, DR, Wendt, CW (1984) The response of cotton (Gossypium hirsutum) water relations to smooth pigweed (Amaranthus hybridus) competition. Weed Sci 32:126132 CrossRefGoogle Scholar
Thomas, WE, Burke, IC, Wilcut, JW (2004) Weed management in glyphosate-resistant corn with glyphosate and halosulfuron. Weed Technol 18:10491057 CrossRefGoogle Scholar
[USDA-AMS] US Department of Agriculture–Agricultural Marketing Service (2013) Cotton Varieties Planted—2013 Crop, Corrected. Memphis, TN: US Department of Agriculture, Agricultural Marketing Service–Cotton Program. 9 pGoogle Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2010a) Weed management with glyphosate- and glufosinate-based systems in PHY 485 WRF cotton. Weed Technol 25:183191 CrossRefGoogle Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2010b) Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24:403410 CrossRefGoogle Scholar