Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T18:32:29.143Z Has data issue: false hasContentIssue false

Nitrogen Influences Bispyribac-Sodium Efficacy and Metabolism in Annual Bluegrass (Poa annua) and Creeping Bentgrass (Agrostis stolonifera)

Published online by Cambridge University Press:  20 January 2017

Patrick E. McCullough*
Affiliation:
Department of Crop and Soil Science, University of Georgia, Griffin, GA 30223
Stephen E. Hart
Affiliation:
Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
Thomas Gianfagna
Affiliation:
Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
Fabio Chaves
Affiliation:
Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
*
Corresponding author's E-mail: [email protected]

Abstract

Field and laboratory experiments were conducted in New Jersey to investigate the influence of nitrogen on annual bluegrass and creeping bentgrass metabolism and responses to bispyribac-sodium. In field experiments, withholding nitrogen during the test period increased sensitivity of both grasses to bispyribac-sodium, and grasses fertilized biweekly had darker color on most rating dates. Nitrogen generally increased annual bluegrass tolerance to bispyribac-sodium at 74 g ha−1 but not at 148 g ha−1. Creeping bentgrass was influenced by nitrogen at both herbicide rates. In laboratory experiments, weekly nitrogen treatments increased 14C-bispyribac-sodium metabolism in both grasses compared to unfertilized plants. Annual bluegrass metabolized approximately 50% less herbicide regardless of nitrogen regime compared to creeping bentgrass. Overall, routine nitrogen fertilization appears to improve annual bluegrass and creeping bentgrass tolerance to bispyribac-sodium, which may be attributed to higher metabolism.

En New Jersey se llevaron a cabo experimentos de campo y de laboratorio para investigar la influencia del nitrógeno en el metabolismo y las respuestas al bispyribac-sodium en Poa annua y Agrostis stolonifera. En los experimentos de campo, el no proporcionar nitrógeno durante el período de estudio incrementó la sensibilidad de ambos céspedes al bispyribac-sodium, mientras que los céspedes fertilizados cada dos semanas, tuvieron un color más oscuro en la mayoría de las fechas de evaluación. El nitrógeno generalmente incrementó la tolerancia de P. annua al bispyribac-sodium a74 g ha−1, pero no a 148 g ha−1, mientras que A. stolonifera fue influenciada por el nitrógeno a ambas dosis del herbicida. En los experimentos de laboratorio, los tratamientos semanales de nitrógeno incrementaron el metabolismo de 14C-bispyribac-sodium en ambos céspedes, comparados con plantas sin fertilizar. P. annua metabolizó aproximadamente 50% menos herbicida en comparación a A. stolonifera independientemente del suministro de nitrógeno. En general, la fertilización rutinaria con nitrógeno parece mejorar la tolerancia de P. annua y A. stolonifera al bispyribac-soidum lo que puede atribuirse a un mayor metabolismo.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askew, S. D. and Wilcut, J. W. 2002. Absorption, translocation, and metabolism of foliar-applied CGA-362622 in cotton, peanut, and selected weeds. Weed Sci. 50:293298.CrossRefGoogle Scholar
Beard, J. B. 1970. An ecological study of annual bluegrass. USGA Green Sect. Rec. 8:1318.Google Scholar
Beard, J. B., Rieke, P. E., Turgeon, A. J., and Vargas, J. M. 1978. Annual Bluegrass (Poa annua L.) Description, Adaptation, Culture and Control. East Lansing, MI Michigan State University Agricultural Experiment Station, Research Report 352.Google Scholar
Beasley, J. S., Branham, B., and Sharp, W. 2005. Metabolism of Trinexapac-Ethyl and Paclobutrazol by Annual Bluegrass (Poa annua L.) and Creeping Bentgrass (Agrostis stolonifera L.). Madison, WI American Society of Agronomy, Agron, Abstr. 64-2.Google Scholar
Bowman, D. C. 2003. Daily vs. periodic nitrogen addition affects growth and tissue nitrogen in perennial ryegrass turf. Crop Sci. 43:631638.CrossRefGoogle Scholar
Branham, B. and Calhoun, R. 2005. Velocity: annual bluegrass control at last? Golf Course Manag. 73:7377.Google Scholar
Brosnan, J. T., Thoms, A. W., McCullough, P. E., Armel, G. R., Breeden, G. K., Sorochan, J. C., and Mueller, T. C. 2010. Nitrogen influences efficacy of flazasulfuron for annual bluegrass and perennial ryegrass control. Weed Sci. 58:449456.CrossRefGoogle Scholar
Cathcart, R. J., Chandler, K., and Swanton, C. J. 2004. Fertilizer nitrogen rate and the response of weeds to herbicides. Weed Sci. 52:291296.CrossRefGoogle Scholar
Dernoeden, P. H., Carroll, M. J., and Krouse, J. M. 1993. Weed management and tall fescue quality as influenced by mowing, nitrogen, and herbicides. Crop Sci. 33:10551061.CrossRefGoogle Scholar
Dubleman, A. M., Solsten, T. R., Fujiwara, H., and Mehrsheikh, A. 1997. Metabolism of halosulfuron-methyl by corn and wheat. J. Agric. Food Chem. 45:23142321.CrossRefGoogle Scholar
Goss, R. M., Baird, J. H., Kelm, S. L., and Calhoun, R. N. 2002. Trinexapac-ethyl and nitrogen effects on creeping bentgrass grown under reduced light conditions. Crop Sci. 42:472479.Google Scholar
Johnson, B. J. 1984. Influence of nitrogen on recovery of bermudagrass (Cynodon dactylon) treated with herbicides. Weed Sci. 32:819823.CrossRefGoogle Scholar
Johnson, B. J. 1990. Herbicide × annual fertility programs influence on creeping bentgrass performance. Agron. J. 82:2733.CrossRefGoogle Scholar
Johnson, B. J. and Bowyer, T. H. 1982. Management of herbicide and fertility levels on weeds and Kentucky bluegrass turf. Agron. J. 74:845850.CrossRefGoogle Scholar
Johnson, B. J. and Burns, R. E. 1985. Effect of soil pH, fertility, and herbicides on weed control and quality of bermudagrass (Cynodon dactylon) turf. Weed Sci. 33:366370.CrossRefGoogle Scholar
Kaminski, J. A. and Dernoeden, P. H. 2007. Seasonal Poa annua L. seedling emergence patterns in Maryland. Crop Sci. 47:775779.CrossRefGoogle Scholar
Landschoot, P. J. and Waddington, D. V. 1987. Response of turfgrass to various nitrogen sources. Soil Sci. Soc. Am. J. 51:225230.CrossRefGoogle Scholar
Lush, W. M. 1989. Adaptation and differentiation of golf course populations of annual bluegrass. Weed Sci. 37:5459.CrossRefGoogle Scholar
Lycan, D. W. and Hart, S. E. 2006a. Seasonal effects on annual bluegrass control in creeping bentgrass with bispyribac-sodium. Weed Technol. 20:722727.CrossRefGoogle Scholar
Lycan, D. W. and Hart, S. E. 2006b. Foliar and root absorption and translocation of bispyribac-sodium in four cool-season turfgrass species. Weed Technol. 20:10151022.CrossRefGoogle Scholar
Markland, F. E. and Roberts, E. C. 1969. Influence of nitrogen fertilizers on Washington creeping bentgrass, Agrostis palustris Huds. I. Growth and mineral composition. Agron. J. 61:698700.CrossRefGoogle Scholar
McCarty, B. and Estes, A. 2005. A new weapon in the fight against Poa annua . Golf Course Manag. 73:106109.Google Scholar
McCullough, P. E., Hart, S. E., Gianfagna, T., and Chaves, F. 2009. Bispyribac-sodium metabolism in annual bluegrass, creeping bentgrass, and perennial ryegrass. Weed Sci. 57:470473.CrossRefGoogle Scholar
McDonald, S. J., Dernoeden, P. H., and Kaminski, J. E. 2006a. Colonial, creeping, and velvet bentgrass safety and tolerance to bispyribac-sodium. Proc. Northeast Weed Sci. Soc. 60:85.Google Scholar
McDonald, S. J., Dernoeden, P. H., and Kaminski, J. E. 2006b. Creeping bentgrass tolerance and annual bluegrass control with bispyribac-sodium tank-mixed with iron and nitrogen. Appl. Turfgrass Sci. (DOI: 10.1094/ATS-2006-0811-01-RS).CrossRefGoogle Scholar
Olson, B. L., Al-Khatib, K., Stahlman, P., and Isakson, P. J. 2001. Efficacy and metabolism of MON 37500 in Triticum aestivum and weedy grass species as affected by temperature and soil moisture. Weed Sci. 48:541548.CrossRefGoogle Scholar
Park, N., Suto, Y., Miura, Y., Nakatani, N., Iori, S., and Ogasawara, M. 2002. Annual bluegrass (Poa annua L.) control in bentgrass (Agrostis palustris Huds.) green with sequential application of bispyribac-sodium combined with dinitroanalines. Weed Biol. Manag. 2:159162.CrossRefGoogle Scholar
Schmidt, R. E., Talbert, F. L., Baldwin, J. S., Rutledge, E. F., Scherder, E. F., and Wheeler, C. C. 1999. Performance of V-10029 (bispyribac-sodium) in rice weed control programs. Proc. South. Weed Sci. Soc. 52:4950.Google Scholar
Shimizu, T., Nakayama, I., Nagayama, K., Miyazawa, T., and Nezu, Y. 2002. Acetolactate synthase inhibitors. Pages 141. In Böger, P., Wakabayashi, K., and Hirai, K., eds. Herbicide Classes in Development: Mode of Action, Targets, Genetic Engineering, Chemistry. New York Springer-Verlag.Google Scholar
Shortell, R., Hart, S., and Bonos, S. 2008. Response of Kentucky bluegrass cultivars and selections to bispyribac-sodium herbicide. Hortscience. 43:22522255.CrossRefGoogle Scholar
Sprague, H. B. and Burton, G. W. 1937. Annual Bluegrass (Poa annua L.), and Its Requirements for Growth. New Brunswick, NJ New Jersey Agricultural Experiment Station, Bulletin 630. Pp. 124.Google Scholar
Turner, T. R. and Hummel, N. W. 1992. Nutritional requirements and fertilization. Pages 385391. In Waddington, D. V., Carrow, R. N., and Shearman, R. C., eds. Turfgrass. Madison, WI American Society of Agronomy, Monograph No. 32.Google Scholar
Webster, E. P., Zhang, W., Lanclos, D. Y., Masson, J. A., and Morris, S. N. 1999. Experimental herbicides for weed control in rice. Proc. South. Weed Sci. Soc. 52:1617.Google Scholar
Williams, B. J. 1999. Barnyardgrass (Echinochloa crus-galli) control in dry-seeded rice with V-10029. Proc. South. Weed Sci. Soc. 52:50.Google Scholar