Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T00:42:50.117Z Has data issue: false hasContentIssue false

New Technological Developments to Reduce Groundwater Contamination by Herbicides

Published online by Cambridge University Press:  12 June 2017

Edward E. Schweizer*
Affiliation:
Agric. Res. Ser., U. S. Dep. Agric. Crops Res. Lab., Colo. State Univ., Fort Collins, CO 80523

Abstract

Strategies to prevent chemical contamination of groundwater will be more effective and cost less than cleaning up groundwater. Advances in weed control technologies have improved timing of herbicide applications, have reduced application rates from kg/ha to g/ha, and have distributed herbicides better within the weed-crop complex. These technologies include microbial pesticides, controlled-release formulations, herbicide chemistry, improved integrated weed management systems, and bioeconomic weed-crop models that reduce herbicide use. These new technologies should reduce the quantity of herbicides used by farmers and lessen the chances of groundwater contamination.

Type
Symposium
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Andersen, R. N., and Walker, H. L. 1985. Colletotrichum coccodes: A pathogen of eastern black nightshade (Solanum ptycanthum). Weed Sci. 33:902905.CrossRefGoogle Scholar
2. Anonymous. 1983. Pesticides. U.S. Dep. Agric., Econ. Res. Serv. IOS-2. October. Google Scholar
3. Anonymous. 1987. Pesticides to be detected in pilot groundwater study list. Pestic. Toxic Chem. Newsl. 15:1920.Google Scholar
4. Boyette, C. D., and Walker, H. L. 1985. Factors influencing biocontrol of velvetleaf (Abutilon theophrasti) and prickly sida (Sida spinosa) with Fusarium lateritium . Weed Sci. 33:209211.CrossRefGoogle Scholar
5. Comai, L., Facciotti, D., Stalker, D. M., Thompson, G. A., and Hiatt, W. R. 1985. Expression in plants of a bacterial gene coding for glyphosate resistance. p. 329333 in Zaitlin, M., Day, P., and Hollaendcr, A., eds. Biotechnology in Plant Sciences – Relevance to Agriculture in the Eighties. Academic Press, New York.Google Scholar
6. Dawson, J. H. 1981. Selective weed control with EPTC-treated seed of alfalfa (Medicago sativa). Weed Sci. 29:105110.Google Scholar
7. Duke, S. O. 1986. Naturally occurring chemical compounds as herbicides. Rev. Weed Sci. 2:1544.Google Scholar
8. Falco, S. C., Chaleff, R. S., Dumas, K. S., La Rossa, R. A., Leto, K. J., Mauvais, C. J., Mazur, B. J., Ray, T. B., Schloss, J. V., and Yadav, N. S. p. 313328 in Zaitlin, M., Day, P., and Hollaender, A., eds. Biotechnology in Plant Science – Relevance to Agriculture in the Eighties. Academic Press, New York.Google Scholar
9. Holders, P. W. 1986. Pesticides and Groundwater Quality–Issues and Problems in Four States. National Academy Press, Washington, D.C. Google Scholar
10. King, R. P., Lybecker, D. W., Schweizer, E. E., and Zimdahl, R. L. 1986. Biocconomic modeling to simulate weed control strategies for continuous corn (Zea mays). Weed Sci. 34:972979.CrossRefGoogle Scholar
11. McWhorter, C. G., Shaw, W. C., and schweizer, E. E. 1986. Present status and future needs in weed control. In Technology, Public Policy, and the Changing Structure of American Agriculture. Vol. IIBackground Papers Office of Technology Assessment. Paper No. 19.Google Scholar
12. Parker, P. E. 1986. Nematode control of silverleaf nightshade (Solanum elaeagnifolium); a biological control pilot project. Weed Sci. 34(Suppl. 1):3134.Google Scholar
13. Putnam, A. R., and Tang, C. S. 1986. Allelopathy: State of the Science. p. 119 in Putnam, A. R. and Tang, C. S., eds. The Science of Allelopathy. John Wiley and Sons, New York.Google Scholar
14. Rebeiz, C. A., Montazer-Zouhoor, A., Hopen, H. J., and Wu, S. M. 1984. Photodynamic herbicides: 1. Concept and phenomenology. Enzyme Microb. Technol. 6:390401.Google Scholar
15. Schweizer, E. E., Lybecker, D. W., Zimdahl, R. L., and King, R. P. 1986. Weed management strategies in corn based on economic modeling. Proc. West. Soc. Weed Sci. 39:126.Google Scholar
16. Shaner, D. L., and Anderson, P. C. 1985. Mechanism of action of the imidazolinones and cell culture selection of tolerant maize. p. 287299. In Zaitlin, M., Day, P. and Hollaender, A., eds. Biotechnology in Plant Science — Relevance to Agriculture in the Eighties. Academic Press, New York.Google Scholar
17. Shaw, W. C., 1982. Integrated weed management systems technology for pest management. Weed Sci. 30(Suppl. 1):212.Google Scholar
18. Trimnell, D. B., Shasha, B. S., Wing, R. E., and Otey, F. H. 1982. Pesticide encapsulation using a starch-borate complex as wall material. J. Appl. Polym. Sci. 27:39193928.CrossRefGoogle Scholar
19. Walker, H. L., and Boyette, C. D. 1985. Biocontrol of sicklepod (Cassia obtusifolia) in soybeans (Glycine max) with Alternaria cassiae . Weed Sci. 33:212215.CrossRefGoogle Scholar
20. Watson, A. K. 1976. The biological control of Russian knapweed with a nematode. Proc. 4th Int. Symp. Biol. Control Weeds. Univ. Fla., Gainesville. p. 221223.Google Scholar