Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T04:39:54.495Z Has data issue: false hasContentIssue false

Modelling the Effectiveness of Herbicide Rotations and Mixtures as Strategies to Delay or Preclude Resistance

Published online by Cambridge University Press:  12 June 2017

Jonathan Gressel
Affiliation:
The Weizmann Inst. Sci., Rehovot, IL-76100, Israel
Lee A. Segel
Affiliation:
The Weizmann Inst. Sci., Rehovot, IL-76100, Israel

Abstract

Herbicide-resistant populations have evolved only in monoculture and/or monoherbicide conditions at predictable rates for each compound and weed. No populations of triazine-resistant weeds have appeared in corn where rotations of crops and herbicides or herbicide mixtures were used. This is due to the greatly reduced competitive fitness of the resistant individuals, which could be expressed only during rotational cycles, and also to the greater sensitivity of resistant individuals to other herbicides, pests, and control practices (“negative cross-resistance”). The model presented here describes how an understanding of all of these factors can provide strategies to decrease the frequency of the resistant individuals during rotation. Rotations or mixtures may not delay the rate of appearance of resistance to inhibitors of acetolactate synthase (ALS), where the fitness of resistant biotypes is claimed to be near normal. The best way to delay resistance to ALS inhibitors is to use those compounds with less persistence so that the selection pressure will be lowered. Too little is known about the frequency of resistance to other herbicides with target-site resistance–to dinitroanilines, to acetyl CoA carboxylase inhibitors, or to those situations where a single enzyme system confers resistance to a broad spectrum of seemingly unrelated herbicides.

Type
Symposium
Copyright
Copyright © 1990 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ahrens, W. H., and Stoller, E. W. 1983. Competition, growth rate and CO2 fixation in triazine-susceptible and -resistant smooth pigweed (Amaranthus hybridus). Weed Sci. 31:438444.CrossRefGoogle Scholar
2. Antonovics, J., and Bradshaw, A. D. 1970. Evolution in closely adjacent plant populations. 8. Clinal patterns at a mine boundary. Heredity 25:349362.CrossRefGoogle Scholar
3. Arntzen, C. J., and Duesing, J. H. 1983. Chloroplast-encoded herbicide resistance. p. 273299 in Ahmand, F., Downey, K., Schultz, J., and Voellmy, R. W., ed. Advances in Gene Technology. Academic Press, New York.Google Scholar
4. Beversdorf, W. D., Hume, D. J., and Donnelly-Vanderloo, M. J. 1988. Agronomic performance of triazine-resistant and susceptible reciprocal spring Canola hybrids. Crop Sci. 28:932934.Google Scholar
5. Beyer, E. M., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonyl urea herbicides. p. 117189 in Kearney, P. C. and Kaufman, D. D., ed. Herbicides: Chemistry, Degradation and Mode of Action, Vol. 3. Marcel Dekker, New York.Google Scholar
6. Bulcke, R., Verstraete, F., Van Himme, M., and Stryckers, J. 1987. Biology and control of Epilobium ciliatum Rafin. p. 5767 in Cavalloro, R., and Robinson, D. W., ed. Weed Control on Vine and Soft Fruits. A. A. Balkema, Rotterdam, Boston.Google Scholar
7. Chaleff, R. S., and Ray, T. B. 1984. Herbicide-resistant mutants from tobacco cell cultures. Science 223:11481151.Google Scholar
8. Clay, D. V. 1987. The response of simazine-resistant and susceptible biotypes of Chamomilla suaveolens, Epilobium ciliatum and Senecio vulgaris to other herbicides. Br. Crop Prot. Conf.–Weeds, p. 925932.Google Scholar
9. Conard, S. G., and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes susceptible or resistant to atrazine. J. Appl. Ecol. 16:171177.CrossRefGoogle Scholar
10. Darmency, H., and Gasquez, J. 1983. Esterase polymorphism and growth form differentiation in Poa annua L. New Phytol. 95:289297.CrossRefGoogle Scholar
11. Darmency, H., and Gasquez, J. 1983. Interpreting the evolution of a triazine-resistant population of Poa annua L. New Phytol. 95:299304.CrossRefGoogle Scholar
12. Ducruet, J. M., and Ort, D. R. 1988. Enhanced susceptibility of photosynthesis to high leaf temperature in triazine-resistant Solanum nigrum L. Evidence for photosystem II D1 protein site of action. Plant Sci. 56:3948.CrossRefGoogle Scholar
13. Fuerst, E. P., Arntzen, C. J., Pfister, K., and Penner, D. 1986. Herbicide cross resistance in triazine-resistant biotypes of four weed species. Weed Sci. 34:344353.Google Scholar
14. Gasquez, J., and Compoint, J. P. 1981. Isoenzymatic variation in populations of Chenopodium album L. resistant and susceptible to triazines. Agro-Ecosystems 7:110.Google Scholar
15. Glasgow, J. L., Mojica, E., Baker, D. R., Tillis, H., Gore, N. R., and Kurtz, P. G. 1987. SC-0574 – a new selective herbicide for use in winter cereals. Proc. Br. Crop Prot. Conf.–Weeds, p. 2733.Google Scholar
16. Green, M. B., Moberg, W. K., and LeBaron, H. M., ed. 1990. Fundamental and Practical Approaches to Combating Resistance. Am. Chem. Soc. Symp. Ser., Am. Chem. Soc., Washington, DC. (In press).Google Scholar
17. Gressel, J. 1987. Appearance of single and multi-group herbicide resistances, and strategies for their prevention. Br. Crop Prot. Conf.–Weeds 2:479488.Google Scholar
18. Gressel, J. 1988. Multiple resistances to wheat selective herbicides: new challenges to molecular biology, Oxford Surv. Plant Molec. Cell Biol. 5:195203.Google Scholar
19. Gressel, J. 1988. Wheat Herbicides: The Challenge of Emerging Resistance. Biotechnology Affiliates, Checkendon/Reading, UK.Google Scholar
20. Gressel, J. 1990. Can PGRs alleviate the recently evolved multiple resistances to herbicides? (In press) in Pharis, R. P. and Rood, S. B., ed. Plant Growth Substances 1988, Springer, Heidelberg.Google Scholar
21. Gressel, J., and Ben-Sinai, G. 1985. Low intraspecific competitive fitness in a triazine-resistant, nearly nuclear-isogenic line of Brassica napus . Plant Sci. 38:2932.Google Scholar
22. Gressel, J., and Segel, L. A. 1978. The paucity of genetic adaptive resistance of plants to herbicides: possible biological reasons and implications. J. Theor. Biol. 75:349371.Google Scholar
23. Gressel, J., and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. p. 325347 in LeBaron, H. M. and Gressel, J., ed. Herbicide Resistance in Plants. J. Wiley, Inc., New York.Google Scholar
24. Gressel, J., and Segel, L. A. 1990. Herbicide rotations and mixtures; effective strategies to delay resistance (In press) in Green, M. B., Moberg, W. K., and LeBaron, H. M., ed. Fundamental and Practical Approaches to Combating Resistance. Am. Chem. Soc. Symp. Ser., Am. Chem. Soc., Washington, DC.Google Scholar
25. Haigler, W.E., Gossett, B. J., Harris, J. R., and Toler, J. E. 1988. Resistance of common cocklebur (Xanthium strumarium) to the organic arsenical herbicides. Weed Sci. 36:2427.CrossRefGoogle Scholar
26. Haughn, G. W., and Somerville, C. 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. Gen. Genet. 204:430434.Google Scholar
27. Heap, I. M. 1987. Herbicide cross resistance in a population of annual ryegrass Lolium rigidum . p. 114118 in Lemerle, D. and Leys, A. G., ed. Proc. 8th Aust. Weeds Conf. Google Scholar
28. Holt, J. S. 1988. Reduced growth, competitiveness, and photosynthesis efficiency of triazine-resistant Senecio vulgaris from California. J. Appl. Ecol. 25:307318.Google Scholar
29. Hume, L. 1987. Long-term effects of 2,4-D application of plants. I. Effects on the weed community in a wheat crop. Can. J. Bot. 65:25302536.Google Scholar
30. Hume, L., and Archibold, O. W. 1986. The influence of a weedy habitat on the seed bank of an adjacent cultivated field. Can. J. Bot. 64:18791883.Google Scholar
31. Ireland, C. R., Telfer, A., Covello, P. S., Baker, N. R., and Barber, J. 1988. Studies on the limitations to photosynthesis in leaves of the atrazine-resistant mutant of Senecio vulgaris L. Planta 173:459467.CrossRefGoogle Scholar
32. Kemp, M. S., and Caseley, J. C. 1987. Synergistic effects of 1-aminobenzotriazole on the phytotoxicity of chlortoluron and isoproturon in a resistant population of blackgrass. Br. Crop Prot. Conf. – Weeds, p. 895899.Google Scholar
33. Lehoczki, E., Laskay, G., Pölös, E., and Mikulas, J. 1984. Resistance to triazine herbicides in horseweed (Conyza canadensis). Weed Sci. 32:669674.CrossRefGoogle Scholar
34. Lemoine, Y., Dubacq, J.-P., and Zabulon, G. 1985. Organization of the photosynthetic apparatus from triazine-resistant and susceptible biotypes of several plant species. Can. J. Bot. 64:29993007.Google Scholar
35. Lutman, P.J.W., and Snow, H. S. 1987. Further investigations into resistance of chickweed (Stellaria media). Br. Crop Prot. Conf. – Weeds, p. 901908.Google Scholar
36. Mapplebeck, L. R., Souza-Machado, V., and Grodzinski, B. 1982. Seed germination and seedling growth characteristics of atrazine-susceptible and resistant biotypes of Brassica campestris . Can. J. Plant Sci. 62:733739.CrossRefGoogle Scholar
37. Moss, S. R. 1987. Herbicide resistance in blackgrass (Alopecurus myosuroides). Br. Crop Prot. Conf. – Weeds, p. 879886.Google Scholar
38. Mudge, L. C., Gossett, B. J., and Murphy, T. R. 1984. Resistance of goosegrass (Eleucine indica) to dinitroaniline herbicides. Weed Sci. 32:591594.CrossRefGoogle Scholar
39. Oettmeier, W., Masson, K., Fedtke, C., Konze, J., and Schmidt, R. R. 1982. Effect of different photosystem II inhibitors on chloroplasts isolated from species either susceptible or resistant toward s-triazine herbicides. Pestic. Biochem. Physiol. 18:357367.CrossRefGoogle Scholar
40. Pölös, E., Mikulas, J., Szigeti, Z., Laskay, G., and Lehoczki, E. 1987. Cross-resistance to paraquat and atrazine in Conyza canadensis . Br. Crop Prot. Conf.–Weeds, p. 909916.Google Scholar
41. Powles, S. B., Holtum, J.A.M., Matthews, J. M., and Liljegren, D. R. 1990. Multiple herbicide resistance in annual ryegrass (Lolium rigidum): the search for a mechanism. (In press) in Green, M. E., Moberg, W. K., and LeBaron, H. M., ed. Fundamental and Practical Approaches to Combating Resistance. Am. Chem. Soc. Symp. Ser., Am. Chem. Soc., Washington, DC.Google Scholar
42. Putwain, P. D., Scott, K. R., and Holliday, R. J. 1982. The nature of resistance of triazine herbicides: case histories of phenology and population studies. p. 99116 in LeBaron, H. M. and Gressel, J., ed. Herbicide Resistance in Plants. Wiley, New York.Google Scholar
43. Sagar, G. R., and Mortimer, A. M. 1977. An approach to the study of the population dynamics of plants with special reference to weeds. Appl. Biol. 1:147.Google Scholar
44. Salhoff, C. R., and Martin, A. R. 1986. Kochia scoparia growth response to triazine herbicides. Weed Sci. 34:4042.CrossRefGoogle Scholar
45. Saxena, P. K., and King, J. 1988. Herbicide resistance in Datura innoxia . Plant Physiol. 86:863867.CrossRefGoogle ScholarPubMed
46. Schloss, J. V., Ciskanik, L. M., and Van Dyk, D. E. 1988. Origin of the herbicide binding site of acetolactate synthase. Nature 331:360362.CrossRefGoogle Scholar
47. Sinclair, J., and MacDonald, P. 1987. Photosystem II activity and triazine resistance in weeds. Can. J. Bot. 65:21472151.Google Scholar
48. Stannard, M. E., and Fay, P. K. 1987. Selection of alfalfa seedlings for tolerance to chlorsulfuron. Abstr., Weed Sci. Soc. Am., St. Louis, p. 61.Google Scholar
49. Stowe, A. E., and Holt, J. S. 1988. Comparison of triazine-resistant and susceptible biotypes of Senecio vulgaris and their F1 hybrids. Plant Physiol. 87:183189.CrossRefGoogle Scholar
50. Vaughn, K. C., Marks, M. D., and Weeks, D. P. 1987. A dinitroaniline resistant mutant of Eleucine indica exhibits cross-resistance and super-sensitivity to anti microtubule herbicides and drugs. Plant Physiol. 83:956964.CrossRefGoogle Scholar
51. Vencill, W. K., Foy, C. L., and Orcutt, D. M. 1987. Effects of temperature on triazine-resistant weed biotypes. Environ. Exp. Bot. 27:473480.CrossRefGoogle Scholar
52. Warwick, S. I., and Black, L. 1981. The relative competitiveness of atrazine susceptible and resistant populations of Chenopodium album and C. strictum . Can. J. Bot. 59:689693.CrossRefGoogle Scholar
53. Warwick, S. I., and Black, L. D. 1986. Electrophoretic variation in triazine-resistant and susceptible populations of Amaranthus retroflexus L. New Phytol. 104:661670.Google Scholar
54. Watson, D., Mortimer, A. M., and Putwain, P. D. 1987. The seed bank dynamics of triazine resistant and susceptible biotypes of Senecio vulgaris -implications for control strategies. Proc. Br. Crop Prot. Conf. – Weeds, p. 917924.Google Scholar
55. Williams, K. L. 1976. Mutation frequency at a recessive locus in haploid and diploid strains of a slime mould. Nature 260:785786.Google Scholar
56. Yaacovy, T., Schonfield, M., and Rubin, B. 1986. Characteristics of atrazine-resistant biotypes of three grass weeds. Weed Sci. 34:181184.Google Scholar