Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T17:38:47.004Z Has data issue: false hasContentIssue false

Mitotic Disrupters from Higher Plants and Their potential uses as Herbicides

Published online by Cambridge University Press:  12 June 2017

Martin A. Vaughan
Affiliation:
U.S. Dep. Agric., Agric. Res. Serv., South. Weed Sci. Lab., Stoneville, MS 38776
Kevin C. Vaughn
Affiliation:
U.S. Dep. Agric., Agric. Res. Serv., South. Weed Sci. Lab., Stoneville, MS 38776

Abstract

Mitotic disrupters from higher plants have been studied for their effects on animal cells, but their effects on plant cells have been studied less. The plant-derived compounds have counterparts among herbicides with respect to cellular effects and, in some cases, mode of action. Cellular effects in common are arrested prometaphases (colchicine, dinitroanilines), multipolar divisions (Vinca alkaloids, carbamates), and production of binucleate cells (caffeine, dichlobenil). The potential of these natural compounds, either directly or as the basis of new chemistries for herbicides, has remained largely untapped.

Type
Symposium
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bartles, P. G., and Hilton, J. L. 1973. Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pestic. Biochem, Physiol. 3:462472.Google Scholar
2. Becerra, J., and Lopez-Saez, J. F. 1978. Effects of caffeine, calcium and magnesium on plant cytokinesis. Exp. Cell Res. 111:301308.Google Scholar
3. Bonsignore, C. L., and Hepler, P. K. 1985. Caffeine inhibition of cytokinesis: dynamics of cell plate formation-deformation. Protoplasma 129:2835.Google Scholar
4. Buron, M. I., and Garcia-Herdugo, G. 1983. Experimental analysis of cytokinesis: Comparison of inhibition induced by 2,6-dichlorobenzonitrile and caffeine. Protoplasma 118:192198.Google Scholar
5. Carlson, W. C., Lignowski, E. M., and Hopen, H. J. 1975. The mode of action of pronamide. Weed Sci. 23:155161.Google Scholar
6. Clayton, L., and Lloyd, C. W. 1984. The relationship between the division plane and spindle geometry in Allium cells treated with CIPC and griseofulvin: an antitubulin study. Eur. J. Cell Biol. 34:248253.Google ScholarPubMed
7. Cornman, I. 1941. Disruption of mitosis in Colchicum by means of colchicine. Biol. Bull. 81:297298.Google Scholar
8. Cortesse, F., Bhattacharyya, B., and Wolff, T. 1977. Podophyllotoxin as a probe for the colchicine-binding site of tubulin. J. Biol. Chem. 252:11341140.Google Scholar
9. Creasy, W. A. 1975. Vinca alkaloids and colchicine. Handb. Exp. Pharmakol. 38:670694.Google Scholar
10. Deysson, G. 1975. Microtubules and antimitotic substances. p. 427451 in Borgers, M. and de Brabander, M., eds. Microtubules and Microtubule Inhibitors. North-Holland, Amsterdam.Google Scholar
11. Foisner, R., and Wiche, G. 1985. Promotion of MAP/MAP interaction by taxol. J. Ultrastruct. Res. 93:3341.Google Scholar
12. Gonzalez-Reyes, J. A., Navas, P., and Garcia-Herdugo, G. 1986. An ultrastructural study of cell plate modifications induced by 2,6-dichlorobenzonitrile in onion root meristems. Protoplasma 132:172178.Google Scholar
13. Hepler, P. K., and Jackson, W. T. 1969. Isopropyl-N-phenylcarbamate affects spindle microtubule orientation in dividing endosperm cells of Haemanthus Katherinae Baker. J. Cell Sci. 5:727743.Google Scholar
14. Hess, F. D. 1983. Mode of action of herbicides that affect cell division. p. 7984 in Miyamoto, J. and Kearney, P. C., eds. Pesticide Chemistry. Human Welfare and the Environment. Vol. 3. Mode of action, metabolism and toxicology. Pergamon, Oxford.Google Scholar
15. Hess, F. D., and Bayer, D. 1974. The effect of trifluralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hirsutum L. Acala4-42′). J. Cell Sci. 14:429441.Google Scholar
16. Hess, F. D., and Bayer, D. E. 1977. Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J. Cell Sci. 24:351360.Google Scholar
17. Hillman, G., and Ruthman, A. 1982. Effect of mitotic inhibitors on the ultrastructure of root meristem cells. Planta 155:124132.Google Scholar
18. Hilton, J. L., and Christiansen, M. N. 1972. Lipid contribution to selective action of trifluralin. Weed Sci. 20:290294.CrossRefGoogle Scholar
19. Hogetsu, T., Shibaoka, H., and Shimokoriyama, M. 1974. Involvement of cellulose synthesis in actions of gibberellin and kinetin on cell expansion. 2,6-dichlorobenzonitrile as a new cellulose-synthesis inhibitor. Plant Cell Physiol. 15:389393.Google Scholar
20. Holmsen, J. D., and Hess, F. D. 1984. Growth inhibition and disruption of mitosis by DCPA in oat (Avena sativa) roots. Weed Sci. 32:732738.Google Scholar
21. Holmsen, J. D., and Hess, F. D. 1985. Comparison of the disruption of mitosis and cell plate formation in oat roots by DCPA, colchicine, and propham. J. Exp. Bot. 36:15041513.Google Scholar
22. Juniper, B. E., and Lawton, J. R. 1979. The effects of caffeine, different fixation regimes and low temperature on microtubules in the cells of higher plants. Planta 145:411416.CrossRefGoogle ScholarPubMed
23. Kramers, M. R., and Stebbings, H. 1977. The insensitivity of Vinca rosea to vinblastine. Chromosoma 61:277287.Google Scholar
24. Levan, A. 1938. The effect of colchicine on root mitoses in Allium . Hereditas 24:471486.Google Scholar
25. Levan, A., and Steineggar, E. 1947. The resistance of Colchicum and Bulbocodium to the c-mitotic action of colchicine. Hereditas 33:552566.Google Scholar
26. Ludena, R. F., Anderson, W. H., Prasad, V., Jordan, M. A., Ferrighi, K. C., Roach, M. C., Horowitz, P. M., Murphy, D. B., and Fellous, A. 1986. Interactions of vinblastine and maytansine with tubulin. Ann. N.Y. Acad. Sci. 466:718732.CrossRefGoogle Scholar
27. Manfredi, J. J., and Horwitz, S. B. 1984. Taxol: An antimitotic agent with a new mechanism of action. Pharmac. Ther. 25:83125.Google Scholar
28. Margolis, R. L., and Wilson, L. 1977. Addition of colchicine-tubulin complex to microtubules ends: The mechanism of substoichiometric colchicine poisoning. Proc. Nat. Acad. Sci. USA 74:43664470.CrossRefGoogle ScholarPubMed
29. Meyer, Y., and Herth, W. 1978. Chemical inhibition of cell wall formation and cytokinesis, but not of nuclear division, in protoplasts of Nicotiana tobacum L. cultivated in vitro. Planta 142:253262.Google Scholar
30. Montezinos, D., and Delmer, D. P. 1980. Characterization of inhibitors of cellulose synthesis in cotton fibers. Planta 148:305311.CrossRefGoogle ScholarPubMed
31. Morejohn, L. C., Bureau, T. E., Mole-Bajer, J., Bajer, A. S., and Fosket, D. E. 1987. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172:252264.Google Scholar
32. Morejohn, L. C., Bureau, T. E., Tocchi, L. P., and Fosket, D. E. 1987. Resistance of Rosa microtubule polymerization to colchicine results from a low-affinity interaction of colchicine and tubulin. Planta 170:230241.CrossRefGoogle ScholarPubMed
33. Nebel, B. R. 1937. Cytological observations on colchicine. Biol. Bull. 73:351352.Google Scholar
34. Paul, D. C., and Goff, C. W. 1973. Comparative effects of caffeine, its analogues and calcium deficiency on cytokinesis. Exp. Cell Res. 78:399413.Google Scholar
35. Pickett-Heaps, J. D., and Northcote, D. H. 1966. Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J. Cell Sci. 1:109120.Google Scholar
36. Smith, C. R., and Powell, R. G. 1984. Chemistry and pharmacology of maytansinoid alkaloids. p. 149204 in Pelletier, W. S., ed. Alkaloids: Chemical and Biological Perspectives, Vol. 2. John Wiley, New York.Google Scholar
37. Riviz, S.J.H., Mukerji, D., and Mathur, S. N. 1980. A possible new source of a natural herbicide. J. Exp. Biol. 18:777778.Google Scholar
38. Riviz, S.J.H., Mukerji, D., and Mathur, S. N. 1981. Selective phytotoxicity of 1,3,7-trimethyl xanthine between Phaseolus mungo and some weeds. Agric. Biol. Chem. 45:12551256.Google Scholar
39. Safa, A. R., Hamel, E., and Felsted, R. L. 1987. Photoaffinity labeling of tubulin subunits with a photoactive analogue of vinblastine. Biochemistry 26:97102.CrossRefGoogle ScholarPubMed
40. Schiff, P. B., Fant, T., and Horwitz, S. B. 1979. Promotion of microtubule assembly in vitro by taxol. Nature (Lond.) 277:665667.Google Scholar
41. Schiff, P. B., and Horwitz, S. B. 1981. Tubulin: a target for chemotherapeutic agents. p. 483507 in Sartorelli, A. C., Lazlo, J. S., and Bertino, J. R., eds. Molecular Actions and Targets for Cancer Chemotherapeutic Agents. Bristol-Meyers Cancer Symp., Vol. 2. Academic Press, New York.Google Scholar
42. Segawa, M., and Kondo, K. 1978. Effects of vinblastine on meristematic cells of Allium cepa, I. Experientia 34:996999.Google Scholar
43. Strachan, S. D., and Hess, F. D. 1983. The biochemical mechanism of action of the dinitroaniline herbicide oryzalin. Pestic. Biochem Physiol. 20:141160.Google Scholar
44. Taylor, W. I., and Franswroth, N. R. 1975. The Catharanthus alkaloids. Botany, Chemistry, Pharmacology, and Clinical Use. Marcel Dekker, New York.Google Scholar
45. Vaughan, M. A., and Vaughn, K. C. 1987. Pronamide disrupts mitosis in a unique manner. Pestic. Biochem. Physiol. 28:182193.Google Scholar
46. Vaughan, M. A., and Vaughn, K. C. 1987. Resistance to dinitroaniline herbicides in Eleusine may be due to hyperstabilization of tubulin. J. Cell Biol. 105:29a.Google Scholar
47. Vaughan, M. A., and Vaughn, K. C. 1988. Comparison of cell plate disruption by dichlobenil and DCPA. Abstr. Weed Sci. Soc. Am. 28:6869.Google Scholar
48. Vaughn, K. C., and Vaughan, M. A. 1987. Ultrastructural and cytological effects of vinblastine and vincristine on Catharanthus roseus . Am. J. Bot. 74:627628.Google Scholar
49. Vaughn, K. C., Marks, M. D., and Weeks, D. P. 1987. A dinitroaniline-resistant mutant of Eleusine indica exhibits cross-resistance and super-sensitivity to antimicrotubule herbicides and drugs. Plant Physiol. 83:956964.Google Scholar
50. Wani, M. C., Taylor, H. L., Wall, M. E., Goggon, P., and McPhail, A. T. 1971. Plant antitumor agents. VI. The isolation and structure of taxol a novel antileukemic and antitumor agent from Taxus brevifolia . J. Am. Chem. Soc. 93:23252327.CrossRefGoogle ScholarPubMed
51. Wick, S. M., and Duniec, J. 1983. Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. J. Cell Biol. 97:235243.Google Scholar
52. Wilson, L. 1970. Properties of colchicine binding protein from chick embryo brain. Interactions with Vinca alkaloids and podophyllotoxin. Biochemistry 9:49995007.Google Scholar