Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T06:41:00.621Z Has data issue: false hasContentIssue false

Miscanthus × giganteus Response to Preemergence and Postemergence Herbicides

Published online by Cambridge University Press:  20 January 2017

Eric K. Anderson
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Thomas B. Voigt
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Germán A. Bollero
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Aaron G. Hager*
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected].

Abstract

Miscanthus is a perennial rhizomatous C4 grass being evaluated in the United States as a potential bioenergy feedstock. Weed control during the first two growing seasons is essential for successful establishment. No herbicides are currently labeled for use in Miscanthus grown for biomass, but herbicides used on field corn might be safe to Miscanthus. Greenhouse experiments were conducted in 2007 and 2008 to evaluate the response of Miscanthus to numerous preemergence (PRE) and postemergence (POST) herbicides. Herbicides with activity only on broadleaf species, whether PRE or POST, did not exhibit injury or reduce Miscanthus biomass. Several herbicides, particularly those with significant activity on grass species, exhibited injury ranging from 6 to 71% (scale of 0 to 100) and/or reduced Miscanthus dry mass by 33 to 78%, especially at the highest rates applied. Field experiments were conducted in 2008 and 2009 with a selection of the herbicides used in the greenhouse experiments to evaluate the response of Miscanthus to herbicides applied PRE, POST and PRE followed by POST. Results from the field experiments generally confirmed those from the greenhouse experiments. PRE herbicides and herbicides with broadleaf-specific activity generally did not produce significant injury or reduce aboveground biomass while herbicides with grass activity tended to cause injury ranging from 22 to 25% and/or reduce biomass by 69 to 78%. With some exceptions, results support prior suppositions that herbicides used in corn are safe to use on Miscanthus and may provide potential herbicide options that growers can use when establishing Miscanthus.

La Miscanthus × giganteus, es un zacate C4 perene y rizomatoso que se está evaluando en los EE UU para ser usado como una bio-masa bio-energética potencial. El control de malezas durante los dos primeros períodos de crecimiento es esencial para su establecimiento exitoso. No hay actualmente ningún herbicida etiquetado para ser usado en Miscanthus × giganteus destinado a la producción de biomasa, pero los herbicidas que se utilizan para el cultivo de Zea mays L. podrían ser seguros para el Miscanthus. Se realizaron experimentos de invernadero durante 2007 y 2008 para evaluar la respuesta de Miscanthus a numerosos herbicidas pre-emergentes (PRE) y post emergentes (POST). Los herbicidas con actividad únicamente en especies de hoja ancha, ya sea PRE o POST, no mostraron ningún daño o redujeron la biomasa de Miscanthus. Varios herbicidas, particularmente aquellos con actividad significativa en zacates, mostraron daños que variaron de 6 a 71% (escala de 0 a 100) y/o redujeron la masa seca de Miscanthus de un 33 a un 78%, especialmente cuando se aplicaron las dosis más altas. Se llevaron al cabo experimentos de campo en 2008 y 2007 con una selección de los herbicidas usados en los experimentos de invernadero para evaluar la respuesta de Miscanthus a los herbicidas PRE, POST Y PREfb POST aplicados. Los resultados obtenidos de los experimentos de campo generalmente confirmaron los resultados de los experimentos de invernadero, el herbicida PRE y los de actividad específica para malezas de hoja ancha, mayormente no causaron daños significativos o redujeron la biomasa de la parte aérea mientras que los herbicidas con actividad en zacates tendieron a causar daño que varió de un 22 a un 25% y/o redujeron la biomasa de un 69 a 78%. Con algunas excepciones, los resultados confirmaron las suposiciones anteriores en el sentido de que los herbicidas usados en la producción de Zea maize (L.), son seguros para la Miscanthus y podrían proporcionar opciones potenciales para herbicidas que los productores podrían usar en el establecimiento de la Miscanthus.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barney, J. N. and Ditomaso, J. M. 2008. Nonnative species and bioenergy: are we cultivating the next invader? BioScience 58:6470.Google Scholar
Bollman, J. D., Boerboom, C. M., Becker, R. L., and Fritz, V. A. 2008. Efficacy and tolerance to HPPD-inhibiting herbicides in sweet corn. Weed Technol. 22:666674.Google Scholar
Bullard, M. J., Nixon, P. M. I., Kilpatrick, J. B., Heath, M. C., and Speller, C. S. 1995. Principles of weed control in Miscanthus spp. under contrasting field conditions. Pages. 991996. in. Brighton Crop Protection Conference: Weeds. Proceedings of an International Conference. Farnham, UK: British Crop Protection Council.Google Scholar
Christian, D. G. and Haase, E. 2001. Agronomy of Miscanthus. Pages 2145. In Jones, M. B. and Walsh, M. Miscanthus for Energy and Fibre. London: James & James.Google Scholar
Clifton-Brown, J. C. and Lewandowski, I. 2002. Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in southern Germany. Eur. J. Agron. 16:97110.Google Scholar
Derr, J. F. 2008. Common reed (Phragmites australis) response to postemergence herbicides. Invasive Plant Sci. Manag. 1:153157.Google Scholar
DiTomaso, J. M., Drewitz, J. J., and Kyser, G. B. 2008. Jubatagrass (Cortaderia jubata) control using chemical and mechanical methods. Invasive Plant Sci. Manag. 1:8290.CrossRefGoogle Scholar
Glenn, S., Peregoy, R. S., Hook, B. J., Heimer, J. B., and Wiepke, T. 1986. Sorghum-halepense (L) Pers control with foliar-applied herbicides in conventional and no-tillage soybeans. Weed Res. 26:245250.Google Scholar
Heap, I. M. 2005. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Accessed: April 21, 2010.Google Scholar
Heaton, E. A., Clifton-Brown, J., Voigt, T. B., Jones, M. B., and Long, S. P. 2004a. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitigation Adapt. Strat. Global Change 9:433451.Google Scholar
Heaton, E. A., Voigt, T., and Long, S. P. 2004b. A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenerg. 27:2130.Google Scholar
Hodkinson, T. R., Chase, M. W., Takahashi, C., Leitch, I. J., Bennett, M. D., and Renvoize, S. A. 2002. The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am. J. Bot. 89:279286.Google Scholar
Hodkinson, T. R. and Renvoize, S. 2001. Nomenclature of Miscanthus × giganteus (Poaceae). Kew Bull. 56:759760.CrossRefGoogle Scholar
Jorgensen, U. 1995. Lowcost and safe establishment of Miscanthus. Pages. 541547. in. Proceedings of the 8th European Conference on Biomass. Oxford, UK Pergamon.Google Scholar
Jorgensen, U., Mortensen, J., Kjeldsen, J. B., and Schwarz, K. U. 2003. Establishment, development and yield quality of fifteen Miscanthus genotypes over three years in Denmark. Acta Agr. Scand. Section B-S P Science 53:190199.Google Scholar
Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., and Huisman, W. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 19:209227.CrossRefGoogle Scholar
Lewandowski, I., Kicherer, A., and Vonier, P. 1995. CO2-balance for the cultivation and combustion of Miscanthus. Biomass Bioenerg. 8:8190.CrossRefGoogle Scholar
Lewandowski, I., Scurlock, J. M. O., Lindvall, E., and Christou, M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass & Bioenerg 25:335361.Google Scholar
Linde-Laursen, I. 1993. Cytogenetic analysis of Miscanthus-giganteus, an interspecific hybrid. Hereditas 119:297300.Google Scholar
Lingenfelter, D. D. and Curran, W. S. 2007. Effect of glyphosate and several ACCase-inhibitor herbicides on wirestem muhly (Muhlenbergia frondosa) control. Weed Technol. 21:732738.Google Scholar
Nandula, V. K., Curran, W. S., Roth, G. W., and Hartwig, N. L. 1995. Effectiveness of nicosulfuron and primisulfuron on wirestem muhly (Muhlenbergia frondosa) in no-till corn (Zea mays). Weed Technol. 9:331338.CrossRefGoogle Scholar
SAS Institute 2008. The SAS System for Windows, Version 9.2. Cary, NC: SAS Institute.Google Scholar
Scally, L., Hodkinson, T. R., and Jones, M. B. 2001. Origins and taxonomy of Miscanthus. Pages 19. In Jones, M. B. and Walsh, M. Miscanthus for Energy and Fibre. London: James & James.Google Scholar
Sikkema, P. H., Kramer, C., Vyn, J. D., Kells, J. J., Hillger, D. E., and Soltani, N. 2007. Control of Muhlenbergia frondosa (wirestem muhly) with post-emergence sulfonylurea herbicides in maize (Zea mays). Crop Prot. 26:15851588.Google Scholar
Speller, C. S. 1993. Weed control in Miscanthus and other annually harvested biomass crops for energy or industrial use. Pages. 671676. in. Brighton Crop Protection Conference, Weeds. Proceedings of an International Conference. Farnham, UK: British Crop Protection Council.Google Scholar
Tredaway, J. A., Patterson, M. G., and Wehtje, G. R. 1998. Interaction of clethodim with pyrithiobac and bromoxynil applied in low volume. Weed Technol. 12:185189.Google Scholar
Troxler, S. C., Askew, S. D., Wilcut, J. W., Smith, W. D., and Paulsgrove, M. D. 2002. Clomazone, fomesafen, and bromoxynil systems for bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technol. 16:838844.Google Scholar
Wagenaar, B. M. and VandenHeuvel, E. J. M. T. 1997. Co-combustion of Miscanthus in a pulverised coal combustor: Experiments in a droptube furnace. Biomass Bioenerg. 12:185197.CrossRefGoogle Scholar