Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T11:30:26.178Z Has data issue: false hasContentIssue false

Mechanisms of Paraquat Resistance

Published online by Cambridge University Press:  12 June 2017

E. Patrick Fuerst
Affiliation:
Dep. Agron. & Soils, Wash. State Univ., Pullman, WA 99164-6420
Kevin C. Vaughn
Affiliation:
Dep. Agron. & Soils, Wash. State Univ., Pullman, WA 99164-6420

Abstract

Ten weed species have developed resistance to paraquat. Evidence supporting two potential mechanisms of resistance has been reported in several species. Resistance may be due to the rapid sequestration of paraquat thus reducing levels of paraquat at the site of action in the chloroplast; alternatively, resistance may be due to the rapid enzymatic detoxification of superoxide and other toxic forms of oxygen.

Type
Symposium
Copyright
Copyright © 1990 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Akhavein, A. A., and Linscott, D. L. 1966. The dipyridilium herbicides, paraquat and diquat. Residue Rev. 23:97145.Google Scholar
2. Arntzen, C. J., Pfister, K., and Steinback, K. E. 1982. The mechanism of chloroplast triazine resistance: alterations in the site of herbicide action. p. 185214 in LeBaron, H. M. and Gressel, J., ed. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
3. Baydoun, E.A.H., and Brett, C. T. 1988. Properties and possible physiological significance of cell wall calcium binding in etiolated pea epicotyls. J. Exp. Bot. 39:199208.CrossRefGoogle Scholar
4. Binzel, M. L., Hess, F. D., Bressan, R. A., and Hasegawa, P. M. 1988. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol. 86:607614.CrossRefGoogle ScholarPubMed
5. Bishop, T., Powles, S. B., and Cornic, G. 1987. Mechanism of paraquat resistance in Hordeum glaucum. II. Paraquat uptake and translocation. Aust. J. Plant Physiol. 14:539547.Google Scholar
6. Boiler, T., and Wiemken, A. 1986. Dynamics of vacuolar compartmentation. Ann. Rev. Plant Physiol. 37:137164.CrossRefGoogle Scholar
7. Burton, J. D., Gronwald, J. W., Somers, D. A., Connelly, J. A., Gengenbach, B. G., and Wyse, D. L. 1987. Inhibition of plant acetyl-coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop. Biochem. Biophys. Res. Comm. 148:10391044.CrossRefGoogle ScholarPubMed
8. Byers, T. L., Kameji, R., Rannels, D. E., and Pegg, A. E. 1987. Multiple pathways for uptake of paraquat, methylglyoxal bis (guanylhydrazone), and polyamines. Am. J. Physiol. 252(6:1):C663C669.CrossRefGoogle ScholarPubMed
9. Carroll, E. W., Schwarz, O. J., and Hickok, L. G. 1988. Biochemical studies of paraquat-tolerant mutants of the fern Ceratopteris richardii . Plant Physiol. 87:651654.CrossRefGoogle ScholarPubMed
10. Cheung, A. Y., Bogorad, L., Montagu, M. V., and Schell, J. 1988. Relocating a gene for herbicide tolerance: a chloroplast gene is converted into a nuclear gene. Proc. Natl. Acad. Sci. USA 85:391395.CrossRefGoogle ScholarPubMed
11. Cramer, C. L., and Davis, R. H. 1984. Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa . J. Biol. Chem. 259:51525157.CrossRefGoogle ScholarPubMed
12. Dodge, A. D. 1982. The role of light and oxygen in the action of photosynthetic inhibitor herbicides. p. 5777 in Moreland, D. E., St. John, J. B., and Hess, F. D., eds. Biochemical Responses Induced by Herbicides. Am. Chem. Soc. Symp. Ser. No. 181.CrossRefGoogle Scholar
13. Faulkner, J. S. 1974. Heritability of paraquat tolerance in Lolium perenne . Euphytica 23:281288.CrossRefGoogle Scholar
14. Faulkner, J. S. 1975. A paraquat tolerant line in Lolium perenne . p. 349359 in Symposium on Status, Biology and Control of Grassweeds in Europe, Vol. 1. Eur. Weed Res. Soc. Google Scholar
15. Faulkner, J. S., and Harvey, B.M.R. 1981. Paraquat tolerant Lolium perenne L.: effects of paraquat on germinating seedlings. Weed Res. 21:2936.CrossRefGoogle Scholar
16. Fayed, M. T., Rizk, T. Y., Hassanein, E. E., and Kholosy, A.S.O. 1989. Mechanism of paraquat-resistance in Conyza linifolia biotypes. Ann. Agric. Sci. Ain Shams Univ., Egypt (in press).Google Scholar
17. Fayed, M. T., Rizk, T. Y., Hassanein, E. E., and Kholosy, A.S.O. 1989. Paraquat resistance in horseweed (Conyza linifolia Tackh.). Ann. Agric. Sci. Ain Shams Univ., Egypt (in press).Google Scholar
18. Flowers, T. J., and Lauchli, A. 1983. Sodium versus potassium: substitution and compartmentation. p. 651681 in Lauchli, A. and Bieleski, R. L., ed. Inorganic Plant Nutrition. Encycl. Plant Physiol. New Ser., Vol. 15B.Google Scholar
19. Fuerst, E. P., Nakatani, H. Y., Dodge, A. D., Penner, D., and Arntzen, C. J. 1985. Paraquat resistance in Conyza . Plant Physiol. 77:984989.CrossRefGoogle ScholarPubMed
20. Funderburk, H. H., and Bozarth, G. A. 1967. Review of the metabolism and decomposition of diquat and paraquat. J. Agric. Food Chem. 15:563567.CrossRefGoogle Scholar
21. Gressel, J., Ammon, H. U., Fogelfors, H., Gasquez, J., Kay, Q.O.N., and Kees, H. 1982. Discovery and distribution of herbicide-resistant weeds outside North America. p. 3155 in LeBaron, H. M. and Gressel, J., ed. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
22. Gronwald, J. W., Andersen, R. N., and Yee, C. 1990. Atrazine resistance in velvetleaf due to enhanced atrazine detoxification. Weed Sci. 38:(In press).Google Scholar
23. Hanoika, Y. A. 1987. Paraquat resistance in Erigeron sumatrensis Retz. and Youngia japonica DC. Weed Res. (Japan) 32 (Suppl.):137140.Google Scholar
24. Harper, D. B., and Harvey, B.M.R. 1978. Mechanism of paraquat tolerance in perennial ryegrass. II. Role of superoxide dismutase, catalase, and peroxidase. Plant Cell Environ. 1:211215.CrossRefGoogle Scholar
25. Harvey, B.M.R., and Fraser, T. W. 1980. Paraquat tolerant and susceptible ryegrasses: effects of paraquat treatment on carbon dioxide uptake and ultrastructure of photosynthetic cells. Plant Cell Environ. 3:107117.CrossRefGoogle Scholar
26. Harvey, B.M.R. and Harper, D. B. 1982. Tolerance to bipyridylium herbicides. p. 215233 in LeBaron, H. M. and Gressel, J., ed. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
27. Harvey, B.M.R., Muldoon, J., and Harper, D. B. 1978. Mechanism of paraquat tolerance in perennial ryegrass. I. Uptake, metabolism, and translocation of paraquat. Plant Cell Environ. 1:203209.CrossRefGoogle Scholar
28. Hassan, H. M. 1984. Exacerbation of superoxide radical formation by paraquat. Methods Enzymol. 105:523529.CrossRefGoogle ScholarPubMed
29. Hatzios, K. K., and Penner, D. 1982. Metabolism of Herbicides in Higher Plants. Burgess Publ. Co., Minneapolis, MN.Google Scholar
30. Hickok, L. G., and Schwarz, O. J. 1986. An in vitro whole plant selection system: paraquat tolerant mutants in the fern Ceratopteris . Theor. Appl. Genet. 72:302306.CrossRefGoogle Scholar
31. Hickok, L. G., and Schwarz, O. J. 1986. Paraquat tolerant mutants in Ceratopteris: genetic characterization and reselection for enhanced tolerance. Plant Sci. 47:153158.CrossRefGoogle Scholar
32. Hickok, L. G., and Schwarz, O. J. 1989. Genetic characterization of a mutation that enhances paraquat tolerance in the fern Ceratopteris richardii . Theor. Appl. Genet. 77:200204.CrossRefGoogle ScholarPubMed
33. Hirata, T., and Matsunaka, S. 1985. Paraquat resistance in Erigeron canadensis . Weed Res. (Japan) 30(Suppl.):127128.Google Scholar
34. Islam, A.K.M.R., and Powles, S. B. 1989. Inheritance of resistance to paraquat in barley grass Hordeum glaucum Steud. Weed Res. 28:393397.CrossRefGoogle Scholar
35. Itoh, K. 1988. Paraquat resistance in Erigeron philadelphicus L. Japan Agric. Res. Quart 22:8590.Google Scholar
36. Itoh, K., and Miyahara, M. 1984. Inheritance of paraquat resistance in Erigeron philadelphicus L. Weed Res. (Japan) 29:301307.Google Scholar
37. Itoh, K., and Miyahara, M. 1985. A habitat of Erigeron philadelphicus L. resistant to paraquat. Proc. Tenth Asian-Pac. Weed Sci. Soc. Conf. p. 1318.Google Scholar
38. LeBaron, H. M., and Gressel, J., eds. 1982. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
39. Lehoczki, E., and Szigeti, Z. 1988. Characterization of paraquat-resistant Conyza leaves through delayed fluorescence. p. 115120 in Lichtenthaler, H. K., ed. Applications of Chlorophyll Fluorescence. Kluwer Academic Publ., Dodrecht.Google Scholar
40. Leigh, R. A., and Jones, R.G.W. 1986. Cellular compartmentation in plant nutrition: the selective cytoplasm and the promiscuous vacuole. p. 249279 in Tinker, E. B. and Lauchli, A., ed. Advances in Plant Nutrition, Vol. 2.Google Scholar
41. Pfeffer, P. R., Tu, S. I., Gerasimowicz, W. V., and Boswell, R. T. 1987. Role of the vacuole in metal ion trapping as studied by in vivo 31P-NMR spectroscopy. p. 349359 in Martin, B., ed. Plant Vacuoles. Plenum Press, New York.CrossRefGoogle Scholar
42. Pistocci, R., Bagni, N., and Creus, J. A. 1987. Polyamine uptake in carrot cell cultures. Plant Physiol. 84:374380.CrossRefGoogle Scholar
43. Pistocci, R., Keller, F., Bagni, N., and Matile, P. 1988. Transport and sub-cellular localization of polyamines in carrot protoplasts and vacuoles. Plant Physiol. 87:514518.CrossRefGoogle Scholar
44. Plesnicar, M., and Cerovic, Z. G. 1985. Effect of methyl viologen on slow secondary fluorescence kinetics associated with photosynthetic carbon assimilation in intact isolated chloroplasts. Proc. R. Soc. Lond. B 226:237247.Google Scholar
45. Polos, E., and Mikulas, J. 1987. Cross-resistance to paraquat and atrazine in Conyza canadensis . Br. Crop Prot. Conf.–Weeds, p. 909916.Google Scholar
46. Polos, E., Mikulas, J., Szigeti, Z., Matkovics, B., Hai, D. Q., Parducz, A., and Lehoczki, E. 1988. Paraquat and atrazine cotolerance in Conyza canadensis (L.) Cronq. Pestic. Biochem. Physiol. 30:142154.CrossRefGoogle Scholar
47. Powles, S. B. 1987. Appearance of a biotype of the weed, Hordeum glaucum Steud., resistant to the herbicide paraquat. Weed Res. 26:167172.CrossRefGoogle Scholar
48. Powles, S. B., and Cornic, G. 1987. Mechanism of paraquat resistance in Hordeum glaucum. I. Studies with isolated organelles and enzymes. Aust. J. Plant Physiol. 14:8189.Google Scholar
49. Powles, S. B., Tucker, E. S., and Morgan, T. R. [1990]. An Arctotheca calendula (L.) Levyns (capeweed) biotype in Australia resistant to bipyridyl herbicides. Weed Sci. 38:(Submitted).Google Scholar
50. Rizk, T. Y., Fayed, M. T., Hassanein, E. E., and Kholosy, A.S.O. 1989. Effect of nitrogen fertilization on the phenomena of resistance of horse weed (Conyza linifolia Tackh.) biotypes to bipyridinium herbicides. 1989. Ann. Agric. Sci. Ain Shams Univ., Egypt (in press).Google Scholar
51. Schumaker, K. S., and Sze, H. 1986. Calcium transport into the vacuole of oat roots. J. Biol. Chem. 261:1217212178.CrossRefGoogle ScholarPubMed
52. Shaaltiel, Y., Chua, N. H., Gepstein, S., and Gressel, J. 1988. Dominant pleiotropy controls enzymes co-segregating with paraquat resistance in Conyza bonariensis . Theor. Appl. Genet. 75:850856.CrossRefGoogle Scholar
53. Shaaltiel, Y., Glazer, A., Bocion, P. F., and Gressel, J. 1988. Cross tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat, sulfur dioxide, and ozone. Pestic. Biochem. Physiol. 31:1323.CrossRefGoogle Scholar
54. Shaaltiel, Y., and Gressel, J. 1986. Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis . Pestic. Biochem. Physiol. 26:2228.CrossRefGoogle Scholar
55. Shaaltiel, Y., and Gressel, J. 1987. Kinetic analysis of resistance to paraquat in Conyza . Plant Physiol. 85:869871.CrossRefGoogle ScholarPubMed
56. Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Turner, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S., Siegel, N. R., Rogers, S. G., and Fraley, R. T. 1986. Engineering herbicide tolerance in transgenic plants. Science 233:478481.CrossRefGoogle ScholarPubMed
57. Shimabukuro, R. H. 1985. Detoxication of herbicides. p. 215240 in Duke, S. O., ed. Weed Physiology, Vol. II, Herbicide Physiology. CRC Press, Boca Raton, FL.Google Scholar
58. Slade, P. 1966. The fate of paraquat applied to plants. Weed Res. 6:158167.CrossRefGoogle Scholar
59. Smith, T. A. 1985. Polyamines. Ann. Rev. Plant Physiol. 36:117143.CrossRefGoogle Scholar
60. Summers, L. A. 1980. The Bipyridinium Herbicides. Academic Press, London.Google Scholar
61. Szigeti, Z., Polos, E., and Lehoczki, E. 1988. Fluorescence properties of paraquat resistant Conyza leaves. p. 109114 in Lichtenthaler, H. K., ed. Applications of Chlorophyll Fluorescence. Kluwer Academic Publ., Dodrecht.Google Scholar
62. Tanaka, Y., Chisaka, H., and Saka, H. 1986. Movement of paraquat in resistant and susceptible biotypes of Erigeron philadelphicus and E. canadensis . Physiol. Plant. 66:605608.CrossRefGoogle Scholar
63. Thill, D. C., Mallory, C. A., Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1989. Sulfonylurea resistance – mechanism of resistance and cross resistance. Abstr. Weed Sci. Soc. Am. 29:132.Google Scholar
64. Thompson, G. A., Hiatt, W. R., Facciotti, D., Stalker, D. M., and Comai, L. 1987. Expression in plants of a bacterial gene coding for glyphosate resistance. Weed Sci. 35:1923.CrossRefGoogle Scholar
65. Tucker, E. S., and Powles, S. B. [1990]. A biotype of hare barley (Hordeum leporinum) in Australia resistant to paraquat and diquat. Weed Sci. 38:(Submitted).Google Scholar
66. Tucker, E. S., and Powles, S. B. [1990]. Bipyridyl resistance in three weed species in a single field. Nature (Submitted).Google Scholar
67. Tucker, E. S., and Powles, S. B. 1989. Occurrence and distribution in south-eastern Australia of barley grass (Hordeum glaucum Steud.) resistant to paraquat. Plant Prot. Quart. 3:1921.Google Scholar
68. Vaughn, K. C., and Fuerst, E. P. 1985. Structural and physiological studies of paraquat-resistant Conyza . Pestic. Biochem. Physiol. 24:8694.CrossRefGoogle Scholar
69. Vaughn, K. C., and Vaughan, M. A. 1989. Structural and biochemical characterization of dinitroaniline-resistant Eleusine . Am. Chem. So Symp. Volume (In press).CrossRefGoogle Scholar
70. Vaughn, K. C., Vaughan, M. A., and Camilleri, P. 1989. Lack of cross resistance of paraquat-resistant Conyza to other toxic oxygen generators indicates enzymatic protection is not the resistance mechanism. Weed Sci. 37:511.CrossRefGoogle Scholar
71. Werner, G. M., and Putnam, A. R. 1980. Differential atrazine tolerance within cucumber (Cucumis sativus). Weed Sci. 28:142148.CrossRefGoogle Scholar
72. Youngman, R. J., and Dodge, A. D. 1981. On the mechanism of paraquat resistance in Conyza sp. p. 537544 in Akoyunoglou, G., ed. Photosynthesis and Environment. Balaban Int. Sci. Serv., Philadelphia.Google Scholar
73. Zychlinski, L., Raska-Emery, P., and Montgomery, M. R. 1988. Influence of bipyridinium compounds on microsomal mixed-function oxidation activities. J. Biochem. Toxicol. 3:173189.CrossRefGoogle Scholar