Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T03:04:37.677Z Has data issue: false hasContentIssue false

Interaction of Rice Residue and PRE Herbicides on Emergence and Biomass of Four Weed Species

Published online by Cambridge University Press:  20 January 2017

Bhagirath S. Chauhan*
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
Seth B. Abugho
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
*
Corresponding author's E-mail: b.chauhan@irri.org

Abstract

Studies were conducted in a screenhouse to determine the interaction of rice residue as mulch (0, 3, and 6 t ha−1) and herbicides (nontreated, oxadiazon at 0.5 and 1.0 kg ai ha−1, and pendimethalin at 1.0 and 2.0 kg ai ha−1) on seedling emergence and biomass of barnyardgrass, crowfootgrass, junglerice, and rice flatsedge. Regardless of the residue amount, crowfootgrass and junglerice were effectively controlled by all herbicide treatments. No seedlings of these weed species escaped the herbicides when applied in the presence of residue cover. There was no survival of barnyardgrass seedlings when both herbicides were applied on bare soil (without residue cover); however, some seedlings survived oxadiazon and pendimethalin when applied in the presence of residue cover. For rice flatsedge, the herbicide applications in the presence of residue cover resulted in lower weed control than in the absence of residue. These results suggest that some weed species can escape the application of PRE herbicides in conservation agriculture systems in which residue can bind soil-applied herbicides and result in lower efficacy.

Se realizaron estudios en un invernadero para determinar la interacción de los residuos del arroz como cobertura (0, 3 y 6 t ha−1) y herbicidas (testigo no-tratado, oxadiazon a 0.5 y 1.0 kg ai ha−1, y pendimethalin a 1.0 y 2.0 kg ai ha−1) sobre la emergencia de plántulas y la biomasa de Echinochloa crus-galli, Dactyloctenium aegyptium, Echinochloa colona y Cyperus iria. Sin importar la cantidad de cobertura, D. aegyptium y E. colona fueron controladas efectivamente por todos los tratamientos de herbicidas. Ninguna plántula de estas especies de malezas escaparon a los herbicidas cuando se aplicó en presencia de la cobertura con residuos de arroz. No hubo sobrevivencia de plántulas de E. crus-galli, cuando ambos herbicidas se aplicaron sobre suelo desnudo (sin cobertura de residuos); sin embargo, algunas plántulas sobrevivieron a oxadiazon y pendimethalin cuando estos se aplicaron en presencia de la cobertura de residuos. Para C. iria, las aplicaciones de herbicidas en presencia de la cobertura resultó en menor control que en la ausencia de residuos. Estos resultados sugieren que algunas especies de malezas pueden escapar a las aplicaciones de herbicidas PRE en sistemas de agricultura de conservación en los cuales los herbicidas aplicados al suelo pueden adherirse a los residuos disminuyendo su eficacia.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Banks, P. A. and Robinson, E. L. 1982. The influence of straw mulch on the soil reception and persistence of metribuzin. Weed Sci. 30 :164168.CrossRefGoogle Scholar
Banks, P. A. and Robinson, E. L. 1984. The fate of oryzalin applied to straw-mulched and non-mulched soils. Weed Sci. 32 :269272.Google Scholar
Banks, P. A. and Robinson, E. L. 1986. Soil reception and activity of acetachlor, alachlor, and metolachlor as affected by wheat (Triticum aestivum) straw and irrigation. Weed Sci. 34 :607611.CrossRefGoogle Scholar
Buhler, D. D. 1995. Influence of tillage systems on weed population dynamics and management in corn and soybean in the central USA. Crop Sci. 35 :12471258.Google Scholar
Burke, I. C., Thomas, W. E., Spears, J. F., and Wilcut, J. W. 2003. Influence of environmental factors on after-ripened crowfootgrass (Dactyloctenium aegyptium) seed germination. Weed Sci. 51 :342347.Google Scholar
Chauhan, B. S. 2011. Crowfootgrass (Dactyloctenium aegyptium) germination and response to herbicides in the Philippines. Weed Sci. 59 :512516.Google Scholar
Chauhan, B. S. 2012. Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol. 26 :113.Google Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006a. Tillage system effects on weed ecology, herbicide activity and persistence: a review. Aust. J. Exp. Agric. 46 :15571570.Google Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006b. Tillage systems affect trifluralin bioavailability in soil. Weed Sci. 54 :941947.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2009a. Influence of tillage systems on weed seedling emergence pattern in rainfed rice. Soil Tillage Res. 106 :1521.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2009b. Seed germination ecology of junglerice (Echinochloa colona): a major weed of rice. Weed Sci. 57 :235240.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 105 :221262.CrossRefGoogle Scholar
Chauhan, B. S. and Johnson, D. E. 2011a. Ecological studies on Echinochloa crus-galli and the implications for weed management in direct-seeded rice. Crop Prot. 30 :13851391.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2011b. Row spacing and weed control timing affect yield of aerobic rice. Field Crops Res. 121 :226231.Google Scholar
Chauhan, B. S., Singh, R. G., and Mahajan, G. 2012. Ecology and management of weeds under conservation agriculture: a review. Crop Prot. 38 :5765.Google Scholar
Chauhan, B. S., Singh, V. P., Kumar, A., and Johnson, D. E. 2011. Relations of rice seeding rates to crop and weed growth in aerobic rice. Field Crops Res. 121 :105115.CrossRefGoogle Scholar
Crutchfield, D. A., Wicks, G. A., and Burnside, O. C. 1985. Effect of winter wheat (Triticum aestivum) straw mulch level on weed control. Weed Sci. 34 :110114.Google Scholar
Galinato, M. I., Moody, K., and Piggin, C. M. 1999. Upland Rice Weeds of South and Southeast Asia. Makati City, Philippines : International Rice Research Institute. 156 p.Google Scholar
GenStat. 2005. GenStat Release 8 Reference Manual. Oxford, UK : VSN International. 343 p.Google Scholar
Gopal, R., Jat, R. K., Malik, R. K., Kumar, V., Alam, M. M., Jat, M. L., Mazid, M. A., Saharawat, Y. S., McDonald, A., and Gupta, R. 2010. Direct Dry Seeded Rice Production Technology and Weed Management in Rice Based Systems. Technical Bulletin. New Delhi, India : International Maize and Wheat Improvement Center. 28 p.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1991. The World's Worst Weeds: Distribution and Biology. Malabar, Florida. The University Press of Hawaii. 609 p.Google Scholar
Juliano, L. M., Casimero, M. C., and Llewellyn, R. 2010. Multiple herbicide resistance in barnyardgrass (Echinochloa crus-galli) in direct-seeded rice in the Philippines. Int. J. Pest Manag. 56 :299307.Google Scholar
Liebl, R. A. and Worsham, A. D. 1983. Tillage and mulch effects on morningglory (Ipomoea spp.) and certain other weed species. Proc. Southern Weed Sci. Soc. 36 :405414.Google Scholar
Locke, M. A., Reddy, K. N., and Zablotowicz, R. M. 2002. Weed management in conservation crop production systems. Weed Biol. Manag. 2 :123132.Google Scholar
Maun, M. A. and Barrett, S.C.H. 1986. The biology of Canadian weeds. 77. Echinochloa crus-galli (L.) Beauv. Can. J. Plant Sci. 66 :739759.CrossRefGoogle Scholar
Mercado, B. L. and Talatala, R. L. 1977. Competitive ability of Echinochloa colonum L. against direct-seeded lowland rice. Pages 161165 in Proceedings of the Sixth Asian-Pacific Weed Science Society Conference. Jakarta, Indonesia : Indonesia Asia-Pacific Weed Science Society.Google Scholar
Parochetti, J. and Dec, G. Jr. 1978. Photodecomposition of eleven dinitroaniline herbicides. Weed Sci. 26 :153156.Google Scholar
Peter, C. J. and Weber, J. B. 1985. Adsorption and efficacy of trifluralin and butralin as influenced by soil properties. Weed Sci. 33 :861867.CrossRefGoogle Scholar
Rao, A. N., Johnson, D. E., Sivaprasad, B., Ladha, J. K., and Mortimer, A. M. 2007. Weed management in direct-seeded rice. Adv. Agron. 93 :153255.Google Scholar
Singh, S., Ladha, J. K., Gupta, R. K., Bhusan, L., Rao, A. N., Sivaprasad, B., and Singh, P. P. 2007. Evaluation of mulching, intercropping with Sesbania and herbicide use for weed management in dry-seeded rice (Oryza sativa). Crop Prot. 26 :518524.Google Scholar
Triplett, G. B. Jr. and VanDoren, D. M. Jr. 1977. Agriculture without tillage. Sci. Am. 236 :2833.CrossRefGoogle Scholar
Unger, P. W. 1981. Tillage effects on wheat and sunflower grown in rotation. Soil Sci. Soc. Am. J. 45 :941945.Google Scholar
Walker, A. and Bond, W. 1977. Persistence of the herbicide AC 92, 553 [N-(1-ethylpropyl)-2, 6-dinitro-3, 4-xylidine] in soils. Pestic. Sci. 8 :359365.CrossRefGoogle Scholar