Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T05:26:20.827Z Has data issue: false hasContentIssue false

Interaction between Preemergence Ethofumesate and Postemergence Glyphosate

Published online by Cambridge University Press:  20 January 2017

Andrew R. Kniss*
Affiliation:
University of Wyoming, Laramie, WY 82071
Dennis C. Odero
Affiliation:
University of Florida, Everglades Research and Education Center, Belle Glade, FL 33430
*
Corresponding author's email address: [email protected]

Abstract

Greenhouse and field experiments were conducted to determine whether PRE-applied ethofumesate increased POST spray retention and weed control with glyphosate. In greenhouse studies, ethofumesate was applied PRE at rates from 0 to 224 g ai ha−1 followed by POST treatment with either water or glyphosate (840 g ae ha−1) to which a red dye had been added. Plants were immediately washed and spray retention determined spectrophotometrically. Common lambsquarters retained more glyphosate solution compared to water, regardless of PRE ethofumesate rate. Increasing the rate of PRE ethofumesate increased the POST spray retention of both water and glyphosate. PRE application of ethofumesate increased POST spray retention of water by 114% and glyphosate solution by 18% compared to no ethofumesate treatment as determined by nonlinear regression. Ethofumesate rates of 90 g ha−1 increased POST spray retention to at least 95% of the total observed response. In field studies, common lambsquarters, redroot pigweed, and hairy nightshade densities were all reduced by ethofumesate, although the duration of ethofumesate effect varied by species and ethofumesate application timing. PRE ethofumesate had no significant effect on hairy nightshade density until after POST glyphosate was applied, whereas common lambsquarters densities were most affected by PRE ethofumesate early in the season. Late-season redroot pigweed density was reduced by ethofumesate regardless of application timing.

Se realizaron experimentos de campo y de invernadero para determinar si ethofumesate aplicado PRE incrementó la retención de aplicaciones de glyphosate POST y el control de malezas. En los estudios de invernadero, ethofumesate fue aplicado PRE a dosis de 0 a 224 g ha−1 seguidos de tratamientos POST con agua o glyphosate (840 g ae ha−1) a los cuales se les había agregado un colorante rojo. Las plantas fueron lavadas inmediatamente y la retención fue determinada espectrofotométricamente. Chenopodium album retuvo más glyphosate al compararse con agua, sin importar la dosis PRE de ethofumesate. Al incrementarse la dosis PRE de ethofumesate se aumentó la retención de las aplicaciones POST de agua y glyphosate. La aplicación PRE de ethofumesate incrementó la retención de agua POST en 114% y la de glyphosate en 18% en comparación al tratamiento sin ethofumesate, como se determinó usando regresiones no lineales. Dosis menores a 90 g ha−1 de ethofumesate incrementaron la retención de aplicaciones POST al 95% del total de respuestas observadas. En los estudios de campo, las densidades de C. album, Amaranthus retroflexus y Solanum sarrachoides fueron todas reducidas por ethofumesate, aunque la duración del efecto de ethofumesate varió según la especie y el momento de aplicación de ethofumesate. Ethofumesate PRE no tuvo ningún efecto en la densidad de S. sarrachoides hasta después de que se aplicó glyphosate POST, mientras que las densidades de C. album se vieron más afectadas por ethofumesate PRE, temprano en la temporada. La densidad de A. retroflexus, tarde en la temporada, fue reducida por ethofumesate sin importar el momento de aplicación.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abulnaja, K. O., Tighe, C. R., and Harwood, J. L. 1992. Inhibition of fatty acid elongation provides a basis for the action of the herbicide, ethofumesate, on surface wax formation. Phytochemistry 31 :11551159.Google Scholar
Bolton, P. and Harwood, J. L. 1976. Effect of thiocarbamate herbicides on fatty acid synthesis by potato. Phytochemistry 15 :15071509.Google Scholar
De Ruiter, H., Uffing, A.J.M., Meinen, E., and Prins, A. 1990. Influence of surfactants and plant species on leaf retention of spray solutions. Weed Sci. 38 :567572.Google Scholar
Devine, M., Duke, S. O., and Fedke, C. 1993. Herbicide effects on lipid synthesis. Pages 225242 in : Physiology of Herbicide Action. Englewood Cliffs, NJ : Prentice Hall.Google Scholar
Duncan, D., Penner, D., and Meggitt, W. 1982. The basis for selectivity of root-applied ethofumesate in sugarbeet (Beta vulgaris) and three weed species. Weed Sci. 30 :191194.Google Scholar
Eshel, J., Schweizer, E. E., and Zimdahl, R. 1978. Uptake and translocation of ethofumesate in sugar beet plants. Pesticide Sci. 9 :301304.Google Scholar
Eshel, Y., Schweizer, E., and Zimdahl, R. 1976. Basis for interactions of ethofumesate and desmedipham on sugarbeets and weeds. Weed Sci. 24 :619626.Google Scholar
Gentner, W. A. 1966. The influence of EPTC on external foliage wax deposition. Weeds 14 :2731.Google Scholar
Harr, J., Guggenheim, R., Schulke, R. H., and Falk, R. H. 1991. Chenopodium album L. The Leaf Surface of Major Weeds. Sandoz Agro Ltd.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. F., and Herberger, J. P. 1977. The Worlds Worst Weeds: Distribution and Biology. Honolulu, HI : University of Hawaii Press. 609 p.Google Scholar
Kemp, N. J., Taylor, E. C., and Renner, K. A. 2009. Weed Management in glyphosate- and glufosinate-resistant sugar beet. Weed Technol. 23 :416424.Google Scholar
Kniss, A. R. 2010. Comparison of conventional and glyphosate-resistant sugarbeet the year of commercial introduction in Wyoming. J. Sugar Beet Res. 47 :127134.Google Scholar
Kniss, A. R., Wilson, R. G., Martin, A. R., Burgener, P. A., and Feuz, D. M. 2004. Economic evaluation of glyphosate-resistant and conventional sugarbeet (Beta vulgaris). Weed Technol. 18 :388396.Google Scholar
Kniss, A. R., Miller, S. D., Westra, P. H., and Wilson, R. G. 2007. Glyphosate susceptibility in common lambsquarters (Chenopodium album) is influenced by parental exposure. Weed Sci. 55 :572577.Google Scholar
Leavitt, J.R.C., Duncan, D. N., Penner, D., and Meggitt, W. F. 1979. Inhibition of epicuticular wax deposition on cabbage by ethofumesate. Plant Physiol. 61 :10341036.Google Scholar
Odero, D., Miller, S., and Mesbah, A. 2008. Economics of weed management systems in sugarbeet. J. Sugar Beet Res. 45 :4963.Google Scholar
R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria : ISBN 3-900051-07-0, URL: http://www.R-project.org. Accessed October 17, 2012.Google Scholar
Ramsdale, B. K. and Messersmith, C. G. 2001. Drift-reducing nozzle effects on herbicide performance. Weed Technol. 15 :453460.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay Analysis using R. J. Stat. Softw. 12 :122.Google Scholar
Rubin, B., Rabinowitch, H., Varsano, R., and Adler, U. 1986. Effect of ethofumesate on the epicuticular waxes of onion leaves, and on the response of plants to foliage-applied herbicides. Ann. Appl. Biol. 108 :365371.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Feurst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9 :218227.Google Scholar
Senseman, S. A., ed. 2007. Ethofumesate. Pages 311312 in Herbicide Handbook. 9th ed. Lawrence, KS : Weed Science Society of America.Google Scholar
Westhoven, A. M., Kruger, G. R., Gerber, C. K., Stachler, J. M., Loux, M. M., and Johnson, W. G. 2008. Characterization of selected common lambsquarters (Chenopodium album) biotypes with tolerance to glyphosate. Weed Sci. 56 :685691.Google Scholar
Wilson, R. 1999. Response of nine sugarbeet (Beta vulgaris) cultivars to postemergence herbicide applications. Weed Technol. 13 :2529.Google Scholar
Wilson, R. G., Yonts, C. D., and Smith, J. A. 2002. Influence of glyphosate and glufosinate on weed control and sugarbeet (Beta vulgaris) yield in herbicide-tolerant sugarbeet. Weed Technol. 16 :6673.Google Scholar
Wilson, R., Yonts, C., and Smith, J. 1990. Effect of seeding depth, herbicide, and variety on sugarbeet (Beta vulgaris) emergence, vigor, and yield. Weed Technol. 4 :739742.Google Scholar