Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T17:09:52.526Z Has data issue: false hasContentIssue false

Integrating Cover Crops and POST Herbicides for Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) Control in Corn

Published online by Cambridge University Press:  20 January 2017

Matthew S. Wiggins
Affiliation:
Department of Plant Sciences, University of Tennessee, 605 Airways Blvd., Jackson, TN 38301
M. Angela McClure
Affiliation:
Department of Plant Sciences, University of Tennessee, 605 Airways Blvd., Jackson, TN 38301
Robert M. Hayes
Affiliation:
Department of Plant Sciences, University of Tennessee, 605 Airways Blvd., Jackson, TN 38301
Lawrence E. Steckel*
Affiliation:
Department of Plant Sciences, University of Tennessee, 605 Airways Blvd., Jackson, TN 38301
*
Corresponding author's E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Field experiments were conducted in 2013 and 2014 in Jackson, TN, to evaluate the efficacy of integrating cover crops and POST herbicides in corn to control glyphosate-resistant (GR) Palmer amaranth. Crimson clover and hairy vetch were planted in the fall and accumulated greater than 1,600 kg ha−1 aboveground biomass by time of termination. Crimson clover and hairy vetch provided 62% and 58% Palmer amaranth control 14 d before application, respectively. POST herbicide treatments of glyphosate + S-metolachlor + mesotrione + atrazine, thiencarbazone-methyl + tembotrione + atrazine, and glyphosate + atrazine were applied when Palmer amaranth reached 15 cm tall. The herbicide treatments provided greater than 95% control of Palmer amaranth 28 d after application. In addition to Palmer amaranth suppression, corn was taller at V5 and V7 following a hairy vetch cover crop. Hairy vetch and crimson clover residues provided early season weed suppression because of biomass accumulation. Palmer amaranth in the nontreated control plots reached 15 cm 4 and 3 d ahead of the cover-treated plots in 2013 and 2014, respectively. This could potentially increase POST herbicide-application flexibility for producers. Results of this trial also suggest that cover crops alone are not a means of season-long control of GR Palmer amaranth. From a herbicide resistance-management perspective, the integration of cover crops with herbicide mixtures that incorporate multiple sites of action should aid in mitigating the further selection of herbicide resistance in Palmer amaranth.

Experimentos de campo fueron realizados, en 2013 y 2014 en Jackson, Tennessee, para evaluar la eficacia de integrar cultivos de cobertura y herbicidas POST en maíz para el control de Amaranthus palmeri resistente a glyphosate (GR). Trifolium incarnatum y Vicia villosa brindaron 62% y 58% de control de A. palmeri 14 d después de la aplicación, respectivamente. Los tratamientos de herbicidas POST: glyphosate + S-metolachlor + mesotrione + atrazine, thiencarbazone-methyl + tembotrione + atrazine, y glyphosate + atrazine fueron aplicados cuando A. palmeri alcanzó 15 cm de altura. Los tratamientos de herbicidas brindaron un control de A. palmeri superior a 95%, 28 d después de la aplicación. Además de la supresión de A. palmeri, el maíz fue más alto en los estadios V5 y V7 después del cultivo de cobertura V. villosa. V. villosa y T. incarnatum suprimieron las malezas, temprano durante la temporada, producto de la acumulación de biomasa. En las parcelas testigo sin tratamiento, A. palmeri alcanzó 15 cm, 4 y 3 d antes que en las parcelas tratadas con cultivos de cobertura, en 2013 y 2014, respectivamente. Esto podría aumentar potencialmente la flexibilidad en la aplicación de herbicidas POST para los productores. Los resultados de este estudio también sugieren que los cultivos de cobertura solos no son aptos para alcanzar un control de A. palmeri GR durante toda la temporada de crecimiento. Desde una perspectiva de manejo de resistencia a herbicidas, la integración de cultivos de cobertura con mezclas de herbicidas que incorporan múltiples sitios de acción debería ayudar a mitigar la selección adicional de resistencia a herbicidas en A. palmeri.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

References

Literature Cited

Anonymous (2014) 2014 Environmental Quality Incentives Program: Cover crop requirements in Tennessee. Natural Resource Conservation Service of Tennessee [Online]. Available at http://www.nrcs.usda.gov/wps/portal/nrcs/detail/tn/programs/financial/eqip/?cid=nrcs141p2_016426. Accessed August 8, 2014Google Scholar
Bollman, JD, Boerboom, CM, Becker, RL, Fritz, VA (2008) Efficacy and tolerance to HPPD-inhibiting herbicides in sweet corn. Weed Technol 20:267274 Google Scholar
Bond, JA, Oliver, LR (2006) Comparative growth of Palmer amaranth (Amaranthus palmeri) accessions. Weed Sci 54:121126 CrossRefGoogle Scholar
Bond, JA, Oliver, LR, Stephenson, DO IV (2006) Response of Palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed Technol 20:885892 CrossRefGoogle Scholar
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analysis of experiments with two or three-factor treatment designs. Agron J 81:665672.CrossRefGoogle Scholar
Culpepper, AS, York, AC (1998) Weed management in glyphosate-tolerant cotton. J Cotton Sci 2:174185 Google Scholar
Duke, SO, Powles, SB (2009) Glyphosate-resistant crops and weeds: now and in the future. Agbioforum 12:346347 Google Scholar
Edmisten, KL, Yelverton, FH, Spers, JF, Bowman, DT, Bacheler, JS, Koenning, SR, Crozier, CR, Meijer, AD, Culpepper, AS (2010) Cotton information. NCSU Cooperative Extension Publication. http://ipm.ncsu.edu/Production_Guides/Cotton/contents.pdf. Accessed August 14, 2014Google Scholar
Fernandez-Cornejo, J, Caswell, M (2006) The first decade of genetically engineered crops in the United States [electronic record]. Econ Inf Bull 11, 36 pGoogle Scholar
Franssen, AS, Skinner, DZ, Al-Khatib, K, Horak, MJ, Kulakow, PA (2001) Interspecific hybridization and gene flow of ALS-resistance in Amaranthus species. Weed Sci 49:598606 CrossRefGoogle Scholar
Heap, IM (2014) International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/summary/Species.aspx. Accessed August 14, 2014Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 CrossRefGoogle Scholar
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199204.CrossRefGoogle Scholar
Klingaman, TE, Oliver, LR (1994) Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci 42:523527 CrossRefGoogle Scholar
Krutz, LJ, Locke, MA, Steinriede, RW Jr. (2009) Interactions of tillage and cover crops on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes. J Environ Qual 38:487499 CrossRefGoogle ScholarPubMed
McClure, AT (2010) Planting Corn in Tennessee. Knoxville, TN: University of Tennessee Extension Bull W077Google Scholar
Norsworthy, JK, McClelland, M, Griffith, G, Bangarwa, SK, Still, J (2011) Evaluation of cereal and Brassicaceae cover crops in conservation-tillage, enhanced glyphosate-resistant cotton. Weed Technol 25:613 CrossRefGoogle Scholar
Price, AJ, Balkcom, KS, Duzy, LM, Kelton, JA (2012) Herbicide and cover crop residue integration for Amaranthus control in conservation agriculture cotton and implications for resistance management. Weed Technol 26:490498 CrossRefGoogle Scholar
Reddy, KN (2001) Effects of cereal and legume cover crops residues on weeds, yield, and net return in soybean (Glycine max). Weed Technol 15:660668 CrossRefGoogle Scholar
Reddy, KN, Koger, CH (2004) Live and killed hairy vetch cover crop effects on weeds and yield in glyphosate-resistant corn. Weed Technol 18:835840 CrossRefGoogle Scholar
Sauer, JD (1957) Recent migration and evolution of the dioecious amaranths. Evolution 11:1131 CrossRefGoogle Scholar
Savoy, HJ, Joines, DK (2009) Lime and Fertilizer Recommendations for the Various Crops of Tennessee. University of Tennessee BESS Info 100. https://ag.tennessee.edu/spp/SPP%20Publications/chap2-agronomic_mar2009.pdf. Accessed November 3, 2014Google Scholar
Sellers, BA, Smeda, RJ, Johnson, WG, Kendig, JA, Ellersieck, MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333 CrossRefGoogle Scholar
Steckel, LE, Sprague, CL (2004) Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci 52:359364 CrossRefGoogle Scholar
Stephenson, DO IV, Bond, JA (2012) Evaluation of thiencarbazone-methyl- and isoxaflutole-based herbicide programs in corn. Weed Technol 26:3742 CrossRefGoogle Scholar
Sutton, P, Richards, C, Buren, L, Glasgow, L (2002) Activity of mesotrione on resistant weeds in maize. Pest Manag Sci 58:981984 CrossRefGoogle ScholarPubMed
Swanton, CJ, Gulden, RH, Chandler, K (2007) A rationale for atrazine stewardship in corn. Weed Sci 55:7581 CrossRefGoogle Scholar
Teasdale, JR (1996) Contribution of cover crops to weed management in sustainable agricultural systems. J Prod Agric 9:475479 CrossRefGoogle Scholar
Teasdale, JR, Mohler, CL (1993) Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron J 85:673680 CrossRefGoogle Scholar
[USDA-NASS] U.S. Department of Agriculture—National Agricultural Statistics Service (2014) Acreage. http://usda.mannlib.cornell.edu/usda/nass/Acre//2010s/2014/Acre-06-30-2014.pdf. Accessed August 14, 2014Google Scholar
Vyn, JD, Swanton, CJ, Weaver, SE, Sikkema, PH (2006) Control of Amaranthus tuberculatus var. rudis (common waterhemp) with pre- and postemergence herbicides in Zea mays L. Crop Prot 35:10511056 CrossRefGoogle Scholar
Wagger, MG (1989) Time of desiccation effects on plant composition and subsequent nitrogen release from several winter annual cover crops. Agron J 81:236241 CrossRefGoogle Scholar
Walsh, MJ, Stratford, K, Stone, K, Powles, SB (2012) Synergistic effects of atrazine and mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations and the potential for overcoming resistance to triazine herbicides. Weed Technol 26:341347 CrossRefGoogle Scholar
White, RH, Worsham, AD (1990) Control of legume cover crops in no-till corn (Zea mays) and cotton (Gossypium hirsutum). Weed Technol 4:5762 CrossRefGoogle Scholar
Wise, AM, Grey, TL, Prostko, EP, Vencill, WK, Webster, TM (2009) Establishing the geographical distribution and level of acetolactate synthase resistance to Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol 23:214220 CrossRefGoogle Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 21:301307 CrossRefGoogle Scholar