Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T04:55:14.941Z Has data issue: false hasContentIssue false

Integrating Cereals and Deep Tillage with Herbicide Programs in Glyphosate- and Glufosinate-Resistant Soybean for Glyphosate-Resistant Palmer Amaranth Management

Published online by Cambridge University Press:  20 January 2017

Holden D. Bell*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Robert C. Scott
Affiliation:
Department of Crop, Soil, and Environmental Sciences, Box 357, Lonoke, AR 72086
*
Corresponding author's E-mail: [email protected].

Abstract

A field experiment was conducted at Marianna, AR in 2012 and 2013 to test various combinations of (1) soybean production systems: full-season tillage (rye plus deep tillage using a moldboard plow), full season (no rye plus no tillage), late-season tillage (wheat plus deep tillage), and late season (no wheat plus no tillage); (2) soybean cultivars: glufosinate or glyphosate resistant; and (3) four herbicide programs for management of glyphosate-resistant Palmer amaranth. At soybean harvest, Palmer amaranth control was 95 to 100% when flumioxazin plus pyroxasulfone was applied PRE. In both years full-season tillage and late-season tillage systems in combination with flumioxazin plus pyroxasulfone applied PRE increased Palmer amaranth control over the same systems in the absence of flumioxazin plus pyroxasulfone applied PRE. The addition of deep tillage in the form of a moldboard plow to the full-season and late-season systems reduced Palmer amaranth densities at harvest. Similarly, Palmer amaranth seed production was often lower in the full-season tillage and late-season tillage systems compared with the full-season and late-season no-tillage systems, regardless of soybean cultivar and herbicide programs. Overall, the use of deep tillage in the full-season or late-season systems in combination with a PRE application of flumioxazin plus pyroxasulfone provided greater control of Palmer amaranth, decreasing both density and seed production and increasing soybean grain yields.

Un experimento de campo fue realizado en Marianna, Arkansas en 2012 y 2013, para evaluar varias combinaciones de (1) sistemas de producción de soja: temporada completa y labranza (centeno más labranza profunda), temporada completa (sin centeno y sin labranza), temporada tardía y labranza (trigo más labranza profunda), temporada tardía (sin trigo y sin labranza); (2) cultivares de soja: resistentes a glyphosate o a glufosinate; y (3) cuatro programas de herbicidas para el manejo de Amaranthus palmeri resistente a glyphosate. Al momento de la cosecha de la soja, el control de A. palmeri fue 95 a 100% cuando se aplicó flumioxazin más pyroxasulfone PRE. En ambos años los sistemas de temporada completa más labranza y temporada tardía más labranza en combinación con flumioxazin más pyroxasulfone aplicados PRE aumentaron el control de A. palmeri en comparación con los mismos sistemas en ausencia de flumioxazin más pyroxasulfone aplicados PRE. La adición de labranza profunda en forma de arado de vertedera a los sistemas de temporada completa y temporada tardía redujo las densidades de A. palmeri al momento de la cosecha. Similarmente, la producción de semilla de A. palmeri fue frecuentemente menor en los sistemas de temporada completa más labranza y temporada tardía más labranza al compararse con los sistemas de temporada completa y tardía sin labranza, sin importar el cultivar de soja ni el programa de herbicidas. En general, el uso de labranza profunda en sistemas de temporada completa y temporada tardía en combinación con la aplicación de flumioxazin más pyroxasulfone PRE brindaron un mayor control de A. palmeri, disminuyendo tanto su densidad como la producción de semilla e incrementando así el rendimiento de grano de soja.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Kevin Bradley, University of Missouri.

References

Literature Cited

Barnes, JW, Oliver, LR (2003) Cultural practices and glyphosate applications for sicklepod (Senna obtusifolia) control in soybean (Glycine max). Weed Technol 17:429440 Google Scholar
DeFelice, MS, Carter, PR, Mitchell, SB (2006) Influence of tillage on corn and soybean yield in the United States and Canada. Crop Manag DOI: Google Scholar
DeVore, JD, Norsworthy, JK, Brye, KR (2013) Influence of deep tillage, a rye cover crop, and various soybean production systems on Palmer amaranth emergence in soybean. Weed Technol 27:263270 Google Scholar
Duke, SO, Powles, SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319325 Google Scholar
Duke, SO, Powles, SB (2009) Glyphosate-resistant crops and weeds: now and in the future. AgBioForum 12:346357 Google Scholar
Green, JM (2009) Evolution of glyphosate-resistant crop technology. Weed Sci 57:108117 Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Horowitz, J, Ebel, R, Ueda, K (2010) “No-till” farming is a growing practice. Economic Research Service/USDA. http://www.ers.usda.gov/Publications/EIB70/EIB70.pdf. Accessed April 1, 2012Google Scholar
James, C (2007) Global status of commercialized biotech/GM crops: 2007. http://www.isaaa.org/resources/publications/briefs/. Accessed May 16, 2015Google Scholar
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci 57:644651 Google Scholar
Kelton, JA, Price, AJ, Patterson, MG, Monks, CD, Van Santen, E (2013) Evaluation of tillage and herbicide interaction for Amaranthus control in cotton. Weed Technol 27:298304 Google Scholar
Leon, RG, Owen, MDK (2006) Tillage and seed dormancy effects on common waterhemp (Amaranthus tuberculatus) seedling emergence. Weed Sci 54:10371044 Google Scholar
Lithourgidis, AS, Dhima, KV, Damalas, CA, Vasilakoglou, IB, Eleftherohorinos, IG (2006) Tillage effects on wheat emergence and yield at varying seeding rates, and on labor and fuel consumption. Crop Sci 46:11871192 Google Scholar
Lithourgidis, AS, Tsatsarelis, CA, Dhima, KV (2005) Tillage effects on corn emergence, silage yield, and labor and fuel inputs in double cropping with wheat. Crop Sci 45:25232528 Google Scholar
Moore, JM, Gillespie, TJ, Swanton, CJ (1994) Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine max) development. Weed Technol 8:512518 Google Scholar
Norsworthy, JK (2004) Soybean canopy formations effects on pitted morningglory (Ipomomea lacunosa), common cocklebur (Xanthium strumarium), and sicklepod (Senna obtusifolia) emergence. Weed Sci 52:954960 Google Scholar
Norsworthy, JK, McClelland, M, Griffith, G, Bangarwa, SK, Still, J (2011) Evaluation of cereal and brassicaceae cover crops in conservation-tillage, enhanced, glyphosate-resistant cotton. Weed Technol 25:613 Google Scholar
Norsworthy, JK, Oliveira, MJ (2007) Tillage and soybean canopy effects on common cocklebur (Xanthium strumarium) emergence. Weed Sci 55:474480 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci (Special Issue) 60:3162 Google Scholar
Powles, SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360365 Google Scholar
Reddy, KN (2005) Deep tillage and glyphosate-reduced redvine (Brunnichi ovata) and trumpetcreeper (Campsis radicans) populations in glyphosate-resistant soybean. Weed Technol 19:713718 Google Scholar
Reddy, KN, Zablotowicz, RM, Locke, MA, Koger, CH (2003) Cover crop, tillage, and herbicide effects on weeds, soil properties, microbial populations, and soybean yield. Weed Sci 51:987994 Google Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO IV, Eubank, TW, Scott, RC (2013) Assessment of weed management practices and problem weeds in the Midsouth United States—soybean: a consultant's perspective. Weed Technol 27:612622 Google Scholar
Sammons, RD, Heering, DC, Dinicola, N, Glick, H, Elmore, GA (2007) Sustainability and stewardship of glyphosate and glyphosate-resistant crops. Weed Technol 21:347354 Google Scholar
Scott, B, Smith, K (2011) Prevention and control of glyphosate-resistant pigweed in soybean and cotton. University of Arkansas Cooperative Extension Service Printing Services FSA 2152-PD-3-11RV. 4 pGoogle Scholar
Weston, LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agron J 88:860866 Google Scholar
Wiesbrook, ML, Johnson, WG, Hart, SE, Bradley, PR, Wax, LM (2001) Comparison of weed management systems in narrow-row, glyphosate- and glufosinate-resistant soybean (Glycine max). Weed Technol 15:122128 Google Scholar