Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T22:33:28.981Z Has data issue: false hasContentIssue false

Influence of Seed Vigor, Herbicide Rates, and Incorporation Depths on Emergence and Seedling Development of Soybean (Glycine max)

Published online by Cambridge University Press:  12 June 2017

Sunil Ratnayake
Affiliation:
Dep. Plant Pathol. Weed Sci., Miss. State Univ., Mississippi State, MS 39762
David R. Shaw
Affiliation:
Dep. Plant Pathol. Weed Sci., Miss. State Univ., Mississippi State, MS 39762

Abstract

Imazaquin at 140, 280, and 420 g ai ha-1 did not negatively affect seedling emergence from high vigor (98% germination) soybean seed but, coupled with a 5.0-cm herbicide incorporation depth, reduced seedling emergence from low vigor (67% germination) seed at all rates. Imazaquin at 420 g ha-1 incorporated 5.0 cm deep reduced low and high vigor seedling height 36 and 28%, respectively. Imazaquin at all rates reduced root length from high vigor seed, whereas only the high rate reduced root length of seedlings from low vigor seed. Although 420 g ha-1 metribuzin did not affect seedling emergence or root length, emerged seedlings were severely damaged when herbicide was incorporated to 5.0 cm. Trifluralin at 840 and 1680 g ai ha-1 reduced emergence of low vigor seed when incorporated 5.0 cm deep. Trifluralin at 840 g ha-1 did not affect seedling height or root length, but 1680 g ha-1 reduced height of seedling from low and high vigor seed by 86 and 66% when incorporated 5.0 cm deep. Trifluralin at 1680 g ha-1 reduced shoot dry weight of both types of seedlings only at the 5.0-cm incorporation depth.

Type
Research
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Amoto, , Hoverson, V. A. R. R., and Hacskaylo, J. 1965. Microanatomical and morphological responses of corn and cotton to trifluralin. Proc. Assoc. South. Agric. Workers 66:234.Google Scholar
2. Association of Official Seed Analysts. 1985. Rules for testing seeds. J. Seed Technol. 6:111114.Google Scholar
3. Barrentine, W. L., Hartwig, E. E., Edwards, C. J. Jr., and Kilen, T. C. 1982. Tolerance of three soybean (Glycine max) cultivars to metribuzin. Weed Sci. 30:344348.CrossRefGoogle Scholar
4. Bayer, D. E., Foy, C. L., Mallory, T. E., and Cutter, E. G. 1967. Morphological and histological effects of trifluralin on roots of corn and cotton. Weed Sci. 16:513515.Google Scholar
5. Bishnoi, U. R. 1971. Determination of cotton seed under warm, moist storage conditions and its consequence in terms of seed and plant responses. Ph.D. Dissertation, Miss. State Univ., Mississippi State, MS. 79 p.Google Scholar
6. Bucholtz, D. L. and Lavy, T. L. 1979. Alachlor and trifluralin effects on nutrient uptake in oats and soybeans. Agron. J. 71:2426.CrossRefGoogle Scholar
7. Chen, C. C., Andrews, C. H., Baskin, C. C., and Delouche, J. C. 1972. Influence of quality of seed on growth, development, and productivity of some horticultural crops. Proc. Int. Seed Test. Assoc. 37:923939.Google Scholar
8. Coble, H. D. and Schrader, J. W. 1973. Soybean tolerance to metribuzin. Weed Sci. 21:308309.CrossRefGoogle Scholar
9. Congleton, W. F., Vancantfort, A. M., and Lignowski, E. M. 1987. Imazaquin (Scepter): A new soybean herbicide. Weed Technol. 1:186188.CrossRefGoogle Scholar
10. Edje, O. T. and Burris, T. S. 1971. Effect of soybean vigor on field performance. Agron. J. 63:536538.CrossRefGoogle Scholar
11. Fehr, W. R., Burris, J. S., and Gilman, D. F. 1973. Soybean emergence under field conditions. Agron. J. 65:740742.CrossRefGoogle Scholar
12. Grabe, D. F. 1966. Significance of seedling vigor in corn. Proc. 21st Hybrid Corn Industry Res. Conf. Am. Seed Trade Assoc. 21:3944.Google Scholar
13. Griffin, J. L. and Habetz, R. J. 1989. Soybean (Glycine max) tolerance to preemergence and postemergence herbicides. Weed Technol. 3:459462.CrossRefGoogle Scholar
14. Hirrel, M. C. and Tripp, T. N. 1987. Imazaquin as a predisposing factor associated with root rot complexes of soybean. Proc. South. Weed Sci. Soc. 40:346.Google Scholar
15. Koskinen, W. C., Oliver, J. E., McWhorter, C. G., and Kearney, C. 1986. Effect of trifluralin soil metabolites on soybean (Glycine max) growth and yield. Weed Sci. 34:471473.CrossRefGoogle Scholar
16. Kust, C. A. and Struckmeyer, B. E. 1971. Effects of trifluralin on growth, nodulation and anatomy of soybeans. Weed Sci. 19:147152.CrossRefGoogle Scholar
17. Ladlie, J. S., Meggitt, W. F., and Penner, D. 1976. Effects of pH on metribuzin activity in the soil. Weed Sci. 24:505507.CrossRefGoogle Scholar
18. Ladlie, J. S., Meggitt, W. F., and Penner, D. 1977. Effect of trifluralin and metribuzin combinations on soybean tolerance to metribuzin. Weed Sci. 25:8893.CrossRefGoogle Scholar
19. Mangot, B. L. and Slife, F. E. 1979. Differential metabolism of metribuzin by two soybean (Glycine max) cultivars. Weed Sci. 27:267269.CrossRefGoogle Scholar
20. Oliver, L. R. and Frans, R. E. 1968. Inhibition of cotton and soybean roots from incorporated trifluralin and persistence in soil. Weed Sci. 16:199203.CrossRefGoogle Scholar
21. Retzinger, E. J., Rogers, R. L., and Richard, P. A. 1984. Weed control in soybean with AC-252,214. Proc. South. Weed Sci. Soc. 37:70.Google Scholar
22. Schultz, D. P., Funderburk, H. H. Jr., and Negi, N. S. 1968. Effect of trifluralin on growth, morphology, and nucleic acid synthesis. Plant Physiol. 43:265273.CrossRefGoogle ScholarPubMed
23. Shaner, D. L. and Robson, P. A. 1985. Absorption, translocation, and metabolism of AC 252,214 in soybean (Glycine max), common cocklebur (Xanthium strumarium) and velvetleaf (Abutilon theophrasti). Weed Sci. 33:469471.CrossRefGoogle Scholar
24. Shaw, D. R., Rainero, H. P., Smith, C. A., Wixson, M. B., Ratnayake, W.R.A.S., Bruff, S. A., and Newsom, J. L. 1990. Emergence and growth of sicklepod (Cassia obtusifolia) with various planting and herbicide incorporation depths. Weed Sci. 38:401405.CrossRefGoogle Scholar
25. Smith, D. T. and Wiese, A. F. 1973. Delayed incorporation of trifluralin and nitralin. Weed Sci. 21:163165.CrossRefGoogle Scholar
26. Wax, L. M., Stoller, E. W., and Bernard, R. L. 1976. Differential response of soybean cultivars to metribuzin. Agron. J. 68:484486.CrossRefGoogle Scholar
27. Wesley, R. A. Jr., Shaw, D. R., and Barrentine, W. L. 1989. Incorporation depths of imazaquin, metribuzin, and chlorimuron for common cocklebur (Xanthium strumarium) control in soybeans (Glycine max). Weed Sci. 37:596599.CrossRefGoogle Scholar