Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T03:17:52.622Z Has data issue: false hasContentIssue false

Influence of Pyrithiobac Application Rate and Timing on Weed Control and Cotton Yield in Greece

Published online by Cambridge University Press:  20 January 2017

Nikolaos S. Kaloumenos
Affiliation:
Laboratory of Agronomy, University of Thessaloniki, Box 233, 54124 Thessaloniki, Greece
Vassiliki G. Veletza
Affiliation:
Laboratory of Agronomy, University of Thessaloniki, Box 233, 54124 Thessaloniki, Greece
Antonios N. Papantoniou
Affiliation:
Laboratory of Agronomy, University of Thessaloniki, Box 233, 54124 Thessaloniki, Greece
Stratos G. Kadis
Affiliation:
Laboratory of Agronomy, University of Thessaloniki, Box 233, 54124 Thessaloniki, Greece
Ilias G. Eleftherohorinos*
Affiliation:
Laboratory of Agronomy, University of Thessaloniki, Box 233, 54124 Thessaloniki, Greece
*
Corresponding author's E-mail: [email protected]

Abstract

Field experiments were conducted at four locations (Larissa, Halkidona, Thessaloniki, and Halastra) in Greece to evaluate weed and cotton response to various pyrithiobac rates applied preplant incorporated (PPI), preemergence (PRE), or postemergence (POST). Pyrithiobac applied PPI or PRE at 0.068, 0.102, or 0.136 kg ai/ha controlled black nightshade, pigweeds, and common purslane at Larissa. However, pyrithiobac applied PRE at Thessaloniki and Halkidona was more effective against black nightshade and pigweeds than pyrithiobac applied PPI. Pyrithiobac applied PPI or PRE at 0.068 or 0.102 kg/ha did not control common lambsquarters at Thessaloniki. Weed control with trifluralin plus fluometuron applied PPI and alachlor plus fluometuron applied PRE at Larissa was slightly lower than that obtained with pyrithiobac. At Halkidona, trifluralin plus fluometuron applied PPI and alachlor plus fluometuron applied PRE provided weed control similar to that obtained with pyrithiobac. But at Thessaloniki, these treatments provided better weed control than pyrithiobac. Furthermore, pyrithiobac applied early postemergence (EPOST), midpostemergence, or in sequential systems controlled black nightshade and pigweeds, but it resulted in fair to good control of common purslane, velvetleaf, and common cocklebur. None of the POST treatments controlled common lambsquarters. Fluometuron EPOST controlled black nightshade, common lambsquarters, and common purslane ≥70, 86, and 67%, respectively. Fluometuron EPOST did not control pigweeds, velvetleaf, and common cocklebur. Cotton treated with pyrithiobac, regardless of method of application, yielded similar to the weed-free control. Cotton treated with pyrithiobac PPI at the highest rate (0.136 kg/ ha) yielded less at Halkidona, although adverse effects after its application were not visually apparent. Yield of cotton treated with herbicides was similar, with no difference among treatments.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, R. L., Snipes, E. C., and Crowder, S. H. 1997. Fruiting response of cotton (Gossypium hirsutum) to pyrithiobac. Weed Technol. 11:5963.Google Scholar
Anonymous. 1993. Staple® herbicide, technical information. Wilmington, DE: E. I. DuPont de Nemours. 4 p.Google Scholar
Bailey, W. A., Wilcut, J. W., and Hayes, R. M. 2003. Weed management, fiber quality, and net returns in no-tillage transgenic and nontrasgenic cotton (Gossypium hirsutum L). Weed Technol. 17:117126.CrossRefGoogle Scholar
Byrd, J. D. and York, A. C. 1987. Interaction of fluometuron and MSMA with sethoxydim and fluazifop. Weed Sci. 35:388394.Google Scholar
Corbett, J. L., Askew, S. D., Porterfield, D., and Wilcut, J. W. 2002. Bromoxynil, prometryn, pyrithiobac, and MSMA weed management systems for bromoxynil-resistant cotton (Gossypium hirsutum L). Weed Technol. 16:712718.Google Scholar
Culpepper, A. S. and York, A. C. 1997. Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol. 11:335345.Google Scholar
Culpepper, A. S. and York, A. C. 1999. Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum L). Weed Technol. 13:411420.CrossRefGoogle Scholar
Culpepper, A. S. and York, A. C. 2000. Weed management in ultra narrow row cotton (Gossypium hirsutum L). Weed Technol. 14:1929.Google Scholar
Dotray, A. P., Keeling, J. W., Henniger, C. G., and Abernathy, J. R. 1996. Palmer amaranth (Amaranthus palmeri) and Devil's-claw (Proboscidea louisianica) control in cotton (Gossypium hirsutum) with pyrithiobac. Weed Technol. 10:712.Google Scholar
Guthrie, D. S. and York, A. C. 1989. Cotton (Gossypium hirsutum) development and yield following fluometuron postemergence applied. Weed Technol. 3:501504.Google Scholar
Harrison, M. A., Hayes, M. R., and Mueller, T. C. 1996. Environment affects cotton and velvetleaf response to pyrithiobac. Weed Sci. 44:241247.Google Scholar
Johnson, D. H., Jordan, D. L., Johnson, W. G., Talbert, R. E., and Frans, R. E. 1993. Nicosulfuron, primisulfuron, imazethapyr and DPX-PE350 injury to succeeding crops. Weed Technol. 7:641644.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993a. Cotton (Gossypium hirsutum) response to DPX-PE350 applied postemergence. Weed Technol. 7:159162.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993b. Total postemergence herbicide programs in cotton (Gossypium hirsutum) with sethoxydim and DPX-PE350. Weed Technol. 7:196201.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993c. Influence of application rate and timing on efficacy of DPX-PE350 applied postemergence. Weed Technol. 7:216219.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993d. Influence of application variables on efficacy of postemergence application of DPX-PE350. Weed Technol. 7:619624.Google Scholar
Keeling, J. W., Henniger, C. G., and Aberththy, J. R. 1993. Effects of DPX-PE350 on cotton (Gossypium hirsutum) growth, yield, and fiber quality. Weed Technol. 7:930933.CrossRefGoogle Scholar
Monks, C. D., Patterson, M. G., Wilcut, J. W., and Delaney, D. P. 1999. Effect of pyrithiobac, MSMA, and DSMA on cotton (Gossypium hirsutum L.) growth and weed control. Weed Technol. 13:611.Google Scholar
Paulsgrove, M. D. and Wilcut, J. W. 2001. Weed management with pyrithiobac preemergence in bromoxynil-resistant cotton. Weed Sci. 49:567570.Google Scholar
Porterfield, D., Wilcut, J. W., and Askew, S. D. 2002. Weed management with CGA-362622, fluometuron, and prometryn in cotton. Weed Sci. 50:642647.Google Scholar
Porterfield, D., Wilcut, J. W., Wells, J. W., and Clewis, S. B. 2003. Weed management with CGA-362622 in transgenic and nontransgenic cotton. Weed Sci. 51:10021009.Google Scholar
Shankle, M. W., Hayes, R. M., Reich, V. H., and Mueller, T. C. 1996. MSMA and pyrithiobac effects on cotton (Gossypium hirsutum) development, quality, and yield. Weed Sci. 44:137142.Google Scholar
Snipes, C. E. and Allen, R. L. 1996. Interaction of graminicides applied in combination with pyrithiobac. Weed Technol. 10:889892.Google Scholar