Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T19:44:33.406Z Has data issue: false hasContentIssue false

Influence of Application Timings and Sublethal Rates of Synthetic Auxin Herbicides on Soybean

Published online by Cambridge University Press:  20 January 2017

Craig B. Solomon
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65201
Kevin W. Bradley*
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65201
*
Corresponding author's E-mail: [email protected].

Abstract

Synthetic auxin herbicides have long been utilized for the selective control of broadleaf weeds in a variety of crop and noncrop environments. Recently, two agrochemical companies have begun to develop soybean with resistance to 2,4-D and dicamba which might lead to an increase in the application of these herbicides in soybean production areas in the near future. Additionally, little research has been published pertaining to the effects of a newly-discovered synthetic auxin herbicide, aminocyclopyrachlor, on soybean phytotoxicity. Two field trials were conducted in 2011 and 2012 to evaluate the effects of sublethal rates of 2,4-D amine, aminocyclopyrachlor, aminopyralid, clopyralid, dicamba, fluroxypyr, picloram, and triclopyr on visible estimates of soybean injury, height reduction, maturity, yield, and yield components. Each of these herbicides was applied to soybean at the V3 and R2 stages of growth at 0.028, 0.28, 2.8, and 28 g ae ha−1. Greater height reductions occurred with all herbicides, except 2,4-D amine and triclopyr when applied at the V3 compared to the R2 stage of growth. Greater soybean yield loss occurred with all herbicides except 2,4-D amine when applied at the R2 compared to the V3 stage of growth. The only herbicide applied that resulted in no yield loss at either stage was 2,4-D amine. When applied at 28 g ae ha−1 at the V3 stage of growth, the general order of herbicide-induced yield reductions to soybean from greatest to least was aminopyralid > aminocyclopyrachlor = clopyralid = picloram > fluroxypyr > triclopyr > dicamba > 2,4-D amine. At the R2 stage of growth, the general order of herbicide-induced yield reductions from greatest to least was aminopyralid > aminocyclopyrachlor = picloram > clopyralid > dicamba > fluroxypyr = triclopyr > 2,4-D amine. Yield reductions appeared to be more correlated with seeds per pod than to pods per plant and seed weight. An 18- to 26-d delay in soybean maturity also occurred with R2 applications of all synthetic auxin herbicides at 28 g ae ha−1 except 2,4-D. Results from this research indicate that there are vast differences in the relative phytotoxicity of these synthetic auxin herbicides to soybean, and that the timing of the synthetic auxin herbicide exposure will have a significant impact on the severity of soybean height and/or yield reductions.

Los herbicidas auxinas-sintéticas han sido utilizados por un largo tiempo para el control selectivo de malezas de hoja ancha en una variedad de situaciones con y sin cultivos. Recientemente, dos compañías de agroquímicos iniciaron el desarrollo de soya con resistencia a 2,4-D y dicamba, lo que podría llevar a un incremento en la aplicación de estos herbicidas en zonas productoras de soya en un futuro cercano. Adicionalmente, pocas investigaciones han sido publicadas en relación a los efectos de aminocyclopyrachlor, un herbicida auxina-sintética recientemente descubierto, sobre la fitotoxicidad en soya. Se realizaron dos experimentos de campo en 2011 y 2012 para evaluar los efectos de dosis subletales de 2,4-D amine, aminocyclopyrachlor, aminopyralid, clopyralid, dicamba, fluroxypyr, picloram, y triclopyr sobre los estimados visuales de daño en soya, la reducción en la altura, la madurez, el rendimiento, y los componentes de rendimiento. Cada uno de estos herbicidas fue aplicado a soya en los estadios de desarrollo V3 y R2 a 0.028, 0.28, 2.8, y 28 g ae ha−1. Las mayores reducciones en altura ocurrieron con todos los herbicidas, excepto 2,4-D amine y triclopyr cuando se aplicó en el estadio de desarrollo V3 en comparación con R2. Las mayores pérdidas en el rendimiento de la soya ocurrieron con todos los herbicidas excepto 2,4-D amine cuando se aplicó en el estadio R2 en comparación con V3. El único herbicida aplicado que no resultó en pérdidas de rendimiento en ninguno de los estadios de desarrollo fue 2,4-D amine. Cuando se aplicó a 28 g ae ha−1 en el estadio V3, el orden general de mayor a menor, de reducciones en el rendimiento de la soya inducidas por el herbicida fue: aminopyralid > aminocyclopyrachlor = clopyralid = picloram > fluroxypyr > triclopyr > dicamba > 2,4-D amine. En el estadio de desarrollo R2, el orden general, de mayor a menor, de reducciones en el rendimiento de la soya inducidas por el herbicida fue: aminopyralid > aminocyclopyrachlor = picloram > clopyralid > dicamba > fluroxypyr = triclopyr > 2,4-D amine. Las reducciones en el rendimiento parecieron estar más correlacionadas con el número de semillas por vaina que el número de vainas por planta o el peso de la semilla. Un retraso de 18 a 26 d en la madurez de la soya también ocurrió con aplicaciones en R2 de todos los herbicidas auxinas-sintéticas a 28 g ae ha−1 excepto 2,4-D. Los resultados de esta investigación indican que existen amplias diferencias en la fitotoxicidad relativa de esos herbicidas auxinas-sintéticas en soya, y que el momento de exposición a estos herbicidas tendrá un impacto significativo en la severidad de las reducciones en altura y/o rendimiento de la soya.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K, Peterson, D (1999) Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol 13:264270 Google Scholar
Al-Khatib, K, Parker, R, Fuerst, EP (1992) Alfalfa response to simulated herbicide spray drift. Weed Technol 6:956960 Google Scholar
Al-Khatib, K, Parker, R, Fuerst, EP (1993) Wine grape response to simulated herbicide drift. Weed Technol 7:97102 Google Scholar
Andersen, SM, Clay, SA, Wrage, LJ, Matthees, D (2004) Soybean foliage residues of dicamba and 2,4-D and correlation to application rates and yield. Agron J 96:750760 CrossRefGoogle Scholar
[ASPB] Arkansas State Plant Board (2012) Class F (2,4-D) Restricted Pesticide List. Little Rock, AR: Arkansas Agriculture Department. 3 pGoogle Scholar
Auch, DE, Arnold, WE (1978) Dicamba use and injury on soybenas (Glycine max) in South Dakota. Weed Sci 26:471475 CrossRefGoogle Scholar
Behrens, MR, Mutlu, N, Chakraborty, S, Dumitru, R, Jiang, WZ, LaVallee, BJ, Herman, PL, Clemente, TE, Weeks, DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851188 CrossRefGoogle ScholarPubMed
Behrens, R., Lueschen, WE (1979) Dicamba volatility. Weed Sci 27:486492 Google Scholar
Blouin, DC, Webster, EP, Bond, JA (2011) On the analysis of combined experiments. Weed Technol 25:165169 Google Scholar
[CCME] Canadian Council of Ministers of the Environment (1999) Canadian water quality guidelines for the protection of aquatic life: dicamba. Pages 13 in Canadian environmental quality guidelines, 1999. Winnipeg, Manitoba, Canada: Canadian Council of Ministers of the Environment Google Scholar
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analysis of experiments with two- or three-factor treatment designs Agron J 81:665672 Google Scholar
Cranston, HJ, Kern, AJ, Hackett, JL, Miller, EK, Maxwell, BD, Dyer, WE (2001) Dicamba resistance in kochia. Weed Sci 49:164170 Google Scholar
Derksen, DA (1989) Dicamba, chlorsulfuron, and clopyralid as sprayer contaminants on sunflower, mustard, and lentil, respectively. Weed Sci 37:616621 CrossRefGoogle Scholar
Everitt, JD, Keeling, JW (2009) Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol 23:503506 Google Scholar
Heap, I (2013) International Survey of Herbicide-Resistant Weeds. http://www.weedscience.org. Accessed: April 29, 2013Google Scholar
Heap, I, Morrison, IN (1992) Resistance to auxin-type herbicides in wild mustard (Sinapis arvensis L.) populations in western Canada. Weed Sci Soc Am. Ann Meeting Abstr 32:164 [Abstract]Google Scholar
Hemphill, DD, Montgomery, ML (1981) Response of vegetable crops to sublethal application of 2,4-D. Weed Sci 29:632635 Google Scholar
Holt, JS, LeBaron, HM (1990) Significance and distribution of herbicide resistance. Weed Technol 4:141149 CrossRefGoogle Scholar
Johnson, VA, Fisher, LR, Jordan, DL, Edmisten, KE, Stewart, AM, York, AC (2012) Cotton, peanut, and soybean response to sublethal rates of dicamba, glufosinate, and 2,4-D. Weed Technol 26:195206 Google Scholar
Kelley, KB, Wax, LM, Hager, AG, Riechers, DE (2005) Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci 53:101112 CrossRefGoogle Scholar
Lanini, WT (2000) Simulated drift of herbicides on grapes, tomatoes, cotton, and sunflower. Proc Calif Weed Conf 52:107110 Google Scholar
Marple, ME, Al-Khatib, K, Shoup, D, Peterson, DE, Claassen, M (2007) Cotton response to simulated drift of seven hormonal-type herbicides. Weed Technol 21:987992 Google Scholar
Miller, MD, Mikkelsen, DS, Huffaker, RC (1962) Effects of stimulatory and inhibitory levels of 2,4-D and iron on growth and yield of field beans. Crop Sci 2:114116 Google Scholar
National Climatic Data Center. http://www.ncdc.noaa.gov/. Accessesed April 29, 2013 Google Scholar
Robinson, AP, Davis, VM, Simpson, DM, Johnson, WG (2013) Response of soybean yield components to 2,4-D. Weed Sci 61:6876 Google Scholar
Schabenberger, O, Tharp, BE, Kells, JJ, Penner, D (1999) Statistical tests for hormesis and effective dosages in herbicide dose response. Agron J 91:713721 Google Scholar
Sciumbato, AS, Chandler, JM, Senseman, SA, Bovey, RW, Smith, KL (2004) Determining exposure to auxin-like herbicides. I. Quantifying injury to cotton and soybean. Weed Technol 18:11251134 Google Scholar
Slife, FW (1956) The effect of 2,4-D and several other herbicides on weeds and soybeans when applied as post-emergence sprays. Weeds 4:6168 Google Scholar
Southman, CM, Ehrlich, J (1943) Effects of extract of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 33:517524 Google Scholar
Taylor, DL (1946) Observations on the growth of certain plants in nutrient solutions containing synthetic growth-regulating substances. I. Some effects of 2,4-D acid. Bot Gaz 107:597611 Google Scholar
Texas Agriculture Code (1984) Chapter 75. Pages 213255. St. Paul, MN: West Google Scholar
Thimann, KV (1956) Promotion and inhibition: twin themes of physiology. Am Nat 40:145162 Google Scholar
Thompson, MA, Steckel, LE, Ellis, AT, Mueller, TC (2007) Soybean tolerance to early preplant applications of 2,4-D ester, 2,4-D amine, and dicamba. Weed Technol 21:882885 Google Scholar
Troyer, JR (2001) In the beginning: the multiple discovery of the first hormone herbicides. Weed Sci 49:290297 CrossRefGoogle Scholar
[USDA] United States Department of Agriculture, Economic Research Service (2012) 2013 http://ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx. Accessed April 29Google Scholar
Wax, LM, Knuth, LA, Slife, FW (1969) Response of soybeans to 2,4-D, dicamba, and picloram. Weed Sci 17:388393 Google Scholar
Weidenhamer, JD, Triplett, GB, Sobotka, FE (1989) Dicamba injury to soybean. Agron J 81:637643 Google Scholar
Wiedman, SJ, Appleby, AP (1972) Plant growth stimulation by sublethal concentrations of herbicides. Weed Res 12:6574 Google Scholar
Wright, TR, Shan, G, Walsh, TA, Lira, JM, Cui, C, Song, P, Zhuang, M, Arnold, NL, Lin, G, Yau, K, Russell, SM, Cicchillo, RM, Peterson, MA, Simpson, DM, Zhou, N, Ponsamuel, J, Zhang, Z (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci U S A 107:2024020245 Google Scholar