Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T00:54:17.496Z Has data issue: false hasContentIssue false

Incidence of Herbicide Resistance in Rigid Ryegrass (Lolium rigidum) across Southeastern Australia

Published online by Cambridge University Press:  20 January 2017

Peter Boutsalis*
Affiliation:
The University of Adelaide, School of Agriculture, Food and Wine, Glen Osmond, South Australia, Australia 5064
Gurjeet S. Gill
Affiliation:
The University of Adelaide, School of Agriculture, Food and Wine, Glen Osmond, South Australia, Australia 5064
Christopher Preston
Affiliation:
The University of Adelaide, School of Agriculture, Food and Wine, Glen Osmond, South Australia, Australia 5064
*
Corresponding author's E-mail: [email protected]

Abstract

Herbicide resistance in rigid ryegrass is an escalating problem in grain-cropping fields of southeastern Australia due to increased reliance on herbicides as the main method for weed control. Weed surveys were conducted between 1998 and 2009 to identify the extent of herbicide-resistant rigid ryegrass across this region to dinitroaniline, and acetolactate synthase- and acetyl coenzyme A (CoA) carboxylase-inhibiting herbicides. Rigid ryegrass was collected from cropped fields chosen at random. Outdoor pot studies were conducted during the normal winter growing season for rigid ryegrass with PRE-applied trifluralin and POST-applied diclofop-methyl, chlorsulfuron, tralkoxydim, pinoxaden, and clethodim. Herbicide resistance to trifluralin in rigid ryegrass was identified in one-third of the fields surveyed from South Australia, whereas less than 5% of fields in Victoria exhibited resistance. In contrast, resistance to chlorsulfuron was detected in at least half of the cropped fields across southeastern Australia. Resistance to the cereal-selective aryloxyphenoxypropionate-inhibiting herbicides diclofop-methyl, tralkoxydim, and pinoxaden ranged between 30 and 60% in most regions, whereas in marginal cropping areas less than 12% of fields exhibited resistance. Resistance to clethodim varied between 0 and 61%. Higher levels of resistance to clethodim were identified in the more intensively cropped, higher-rainfall districts where pulse and canola crops are common. These weed surveys demonstrated that a high incidence of resistance to most tested herbicides was present in rigid ryegrass from cropped fields in southeastern Australia, which presents a major challenge for crop producers.

La resistencia a herbicidas en Lolium rigidum es un problema creciente en los campos de cultivo de granos en el sureste de Australia, debido al incremento en la dependencia a herbicidas como el método principal para el control de malezas. Estudios observacionales de malezas se realizaron entre 1998 y 2009 para identificar el alcance en esta región de la resistencia de L. rigidum a los herbicidas dinitroaniline, inhibidores acetolactate synthase y acetyl CoA carboxylase. L. rigidum se recolectó en campos de cultivo seleccionados al azar. Se realizaron estudios al aire libre con macetas durante la temporada normal de crecimiento en invierno para L. rigidum con trifluralin aplicado PRE y diclofop-methyl, chlorsulfuron, tralkoxydim, pinoxaden y clethodim aplicados POST. La resistencia de L. rigidum al herbicida trifluralin fue identificada en un tercio de los campos muestreados en el sur de Australia, mientras que menos del 5% de los campos en Victoria mostraron resistencia. En contraste, la resistencia al chlorsulfuron fue detectada en al menos la mitad de los campos de cultivo en el sureste de Australia. La resistencia a los herbicidas selectivos a cereales, inhibidores aryloxyphenoxy propionate, como son diclofop-methyl, tralkoxydim y pinoxaden, varió entre 30 y 60% en la mayoría de las regiones, mientras que en áreas marginales de cultivo, menos del 12% de los campos mostraron resistencia. La resistencia al clethodim varió entre 0 y 61%. Niveles más altos de resistencia a clethodim se identificaron en los distritos de mayor intensidad de cultivo y mayor precipitación, donde los cultivos de especies leguminosas y Brassica napus son comunes. Estos estudios observacionales de malezas demostraron que existe una alta incidencia de resistencia en L. rigidum a la mayoría de los herbicidas estudiados en los campos de cultivo en el sureste de Australia, lo cual representa un importante reto para los productores.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 1968. The soil map of South Australia is a simplified version of The Atlas of Australian Soils (Division of Soils of the CSIRO, Ninth International Congress of Soil Science, Adelaide).Google Scholar
Anonymous, . 2008. Australian Bureau of Statistics. Year Book Australia. Canberra. Number 90, Pp. 477508.Google Scholar
Anonymous, . 2011. http://www.google.com/earth/index.html. Accessed: March 2, 2011Google Scholar
Boutsalis, P. and Broster, J. C. 2006. Herbicide resistance in Lolium rigidum by commercial institutions. Pages 488490. In Preston, C., Watts, J. H. and Crossman, N. D., eds. Fifteenth Australian Weeds Conference. Adelaide, South Australia Weed Management Society of South Australia, Adelaide.Google Scholar
Broster, J. C., Koetz, E. A., and Wu, H. 2011. Herbicide resistance levels in annual ryegrass (Lolium rigidum Gaud.) in southern New South Wales. Aust. J. Plant Prot. Quart. 26:2228.Google Scholar
Broster, J. C. and Pratley, J. E. 2006. A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Aust. J. Exp. Agric. 46:11511160.Google Scholar
Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29:263281.Google Scholar
Chauhan, B. S., Gill, G. S., and Preston, C. 2006. Tillage system effects on weed ecology, herbicide activity and persistence: a review. Aust. J. Exp. Agric. 46:15571570.Google Scholar
Chauhan, B. S., Gill, G. S., and Preston, C. 2007. Effect of seeding systems and dinitroaniline herbicides on emergence and control of rigid ryegrass (Lolium rigidum) in wheat. Weed Technol. 21:5358.Google Scholar
Christopher, J. T., Powles, S. B., Liljegren, D. R., and Holtum, J. A. M. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). Plant Physiol. 95:10361043.Google Scholar
Delye, C. 2005. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci. 53:728746.Google Scholar
Heap, I. M. 2011. International survey of herbicide resistant weeds. http://www.weedscience.org. Accessed: May 24, 2011.Google Scholar
Heap, I. M. and Knight, R. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl. J. Aust. Inst. Agric. Sci. 48:156157.Google Scholar
Heap, I. M. and Knight, R. 1986. The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl. Aust. J. Agric. Res. 37:149156.Google Scholar
Hollaway, K. L., Kookana, R. S., Noy, D. M., Smith, J. G., and Wilhelm, N. 2006a. Persistence and leaching of sulfonylurea herbicides over a 4-year period in the highly alkaline soils of southeastern Australia. Aust. J. Exp. Agric. 46:10691076.Google Scholar
Hollaway, K. L., Kookana, R. S., Noy, D. M., Smith, J. G., and Wilhelm, N. 2006b. Crop damage caused by residual acetolactate synthase herbicides in the soils of southeastern Australia. Aust. J. Exp. Agric. 46:13231331.Google Scholar
Holtum, J. A. M., Matthews, J. M., Hausler, R. E., Liljegren, D. R., and Powles, S. B. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum): III. On the mechanism of resistance to diclofop-methyl. Plant Physiol. 97:10261034.Google Scholar
Jones, R. E., Vere, D. T., Alemseged, Y., and Medd, R. W. 2005. Estimating the economic cost of weeds in Australian annual winter crops. Agric. Econ. 32:253265.Google Scholar
Llewellyn, R. and Powles, S. B. 2001. High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) across the Western Australian wheatbelt. Weed Technol. 15:242248.Google Scholar
Matthews, J. M. 1994. Management of herbicide resistant weed populations. Pages 317335. In Powles, S. B. and Holtum, J. A. M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL Lewis Publishers.Google Scholar
McAlister, F. M., Holtum, J. A. M., and Powles, S. B. 1995. Dinitroaniline herbicide resistance in rigid ryegrass (Lolium rigidum). Weed Sci. 43:5562.Google Scholar
Owen, M. J., Walsh, M. J., Llewellyn, R. S., and Powles, S. B. 2007. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res. 58:711718.Google Scholar
Potter, T. D. and Salisbury, P. A. 1993. Triazine resistant canola in southern Australia. In Proceedings of the 7th Australian Agronomy Conference. Adelaide, South Australia Australian Society of Agronomy.Google Scholar
Pratley, J. E., Graham, R. J., and Leys, A. R. 1993. Determination of the extent of herbicide resistance in Southern NSW. Pages 286288. in Proceedings of the 10th Australian and 14th Asian-Pacific Weeds Conference: Weed Society of Queensland, Brisbane.Google Scholar
Preston, C. and Powles, S. B. 1998. Amitrole inhibits diclofop metabolism and synergises diclofop-methyl in a diclofop-methyl-resistant biotype of Lolium rigidum . Pestic. Biochem. Physiol. 62:179189.Google Scholar
Preston, C. and Powles, S. B. 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum . Heredity 88:813.Google Scholar
Preston, C., Tardif, F. J., Christopher, J. T., and Powles, S. B. 1996. Multiple herbicide resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic. Biochem. Physiol. 54:123134.Google Scholar
Rauch, T. A., Thill, D. C., Gersdorf, S. A., and Price, W. J. 2010. Widespread occurrence of herbicide resistant Italian ryegrass (Lolium multiflorum) in northern Idaho and eastern Washington. Weed Technol. 24:281288.Google Scholar
Ruchs, C. 2008. Boxer® Gold, a flexible new pre-emergent herbicide alternative for the control of annual ryegrass (Lolium rigidum Gaudin) and toad rush (Juncus bufonius L.) in wheat and barley. Pages 291293. in Proceedings of the 16th Australian Weeds Conference. Cairns, Queensland Weed Society of Queensland, Brisbane.Google Scholar
Ruchs, C. A., O'Connell, P. J., and Boutsalis, P. 2006. Axial®, a cereal selective graminicide for the control of annual ryegrass (Lolium rigidum Gaudin) and other major grass weeds. Pages 838841. in Proceedings of the 15th Australian Weeds Conference Adelaide, South Australia Weed Management Society of South Australia.Google Scholar
Sokal, R. R. and Rohlf, F. J. 1981. Biometry. 2nd ed. San Francisco Freeman.Google Scholar
Stork, P. R. 1995. Field leaching and Degradation of soil applied herbicides in a gradationally textured alkaline soil: chlorsulfuron and triasulfuron. Aust. J. Agric. Res. 46:14451458.Google Scholar
Tardif, F. J. and Powles, S. B. 1994. Herbicide multiple-resistance in a Lolium rigidum biotype is endowed by multiple mechanisms: isolation of a subset with resistant acetyl-CoA carboxylase. Physiol. Plant. 91:488494.Google Scholar
Yu, Q., Collavo, A., Zheng, M. Q., Owen, M. Q., Sattin, M., and Powles, S. B. 2007. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: Evaluation using clethodim. Plant Physiol. 145:547558.Google Scholar
Zadoks, J. C., Chang, T. T., and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415421.Google Scholar