Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T03:10:45.619Z Has data issue: false hasContentIssue false

Host Impact and Specificity of Tortoise Beetle (Cassida rubiginosa) on Canada Thistle (Cirsium arvense) in Iran

Published online by Cambridge University Press:  20 January 2017

Ghorbanali Asadi
Affiliation:
Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
Reza Ghorbani*
Affiliation:
Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
Javad Karimi
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
Alireza Bagheri
Affiliation:
Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
Heinz Mueller-Schaerer
Affiliation:
Département de Biologie/Ecologie et Evolution, Université de Fribourg, Pérolles, CH-1700 Fribourg, Switzerland
*
Corresponding author: E-mail: [email protected]

Abstract

This study determined the potential of the tortoise beetle (Coleoptera: Chrysomelidae) to control Canada thistle (Asteraceae) in Iran. Genetic analysis of the tortoise beetle, based on mitochondrial DNA, confirmed the presence of the species in Iran. A field experiment using five insect densities (0 to 20 larvae plant−1) showed a positive correlation between the number of larvae transferred and impact. Feeding by 20 larvae reduced total biomass of Canada thistle by 78% and the number of capitula by 94%. More important, when grown in competition with wheat, four and eight egg batches (corresponding to approximately 12 and 24 larvae) per Canada thistle plant increased wheat ear weight by 46 and 82%, respectively. Host range studies with 22 crop and 21 weed species using no-choice and multiple-choice tests under laboratory and field conditions and parallel data from a field survey showed that joint feeding and oviposition were restricted to Canada thistle and a few other weed species. Limited feeding, without oviposition, was recorded on an additional seven weed species but also on safflower (10 to 15% reduction in biomass), and common sunflower (< 10%); the latter only under no-choice conditions. The growing period of either crop species, however, does not coincide with the feeding period of the tortoise beetle in the field. Findings indicate that the tortoise beetle is a promising biological control agent for Canada thistle in arable crops and grasslands in Iran. Other complementary methods will likely be needed to prevent substantial yield losses.

Este estudio determinó el potencial del escarabajo Cassida rubiginosa (Coleoptera: Chrysomelidae) para controlar Cirsium arvense (Asteraceae) en Irán. Análisis genéticos de C. rubiginosa, basados en ADN mitocondrial, confirmaron la presencia de esta especie en Irán. Un experimento de campo usando cinco densidades del insecto (0 a 20 larvas por planta) mostraron una correlación positiva entre el número de larvas transferidas y su impacto. La alimentación de las 20 larvas redujo la biomasa total de C. arvense en 78% y el número de capítulos florales en 94%. Más importante aún, cuando la maleza creció en competencia con trigo, cuatro y ocho grupos de huevos (equivalentes a 12 a 24 larvas aproximadamente) por planta de C. arvense incrementaron el peso de la espiga del trigo en 46 a 82%, respectivamente. Estudios de laboratorio y campo con 22 cultivos y 21 especies de malezas para determinar el rango de hospederos, usando pruebas sin alternativa o con alternativas múltiples y datos paralelos de estudios observacionales de campo, mostraron que la alimentación y la oviposición se limitó a C. arvense y unas pocas especies de malezas. Alimentación limitada, sin oviposición, se observó en siete especies de malezas adicionales y en cártamo (10 a 15% reducción de biomasa) y en girasol (<10%); y en este último caso solamente en condiciones sin alternativa. Sin embargo, el período de crecimiento para cualquiera de las especies de cultivos, no coincide con el período de alimentación de C. rubiginosa en el campo. Estos descubrimientos indican que C. rubiginosa es un agente promisorio de control biológico de C. arvense en cultivos arables y pastizales en Irán. Otros métodos complementarios serán posiblemente necesarios para prevenir pérdidas de rendimiento sustanciales.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alex, J. F. 1966. Survey of Weeds of Cultivated Land in the Prairie Provinces. Canada Agriculture. Regina, SK, Canada Queen's Printer.Google Scholar
Ang, B. N. 1995. Canada thistle [Cirsium arvense (L.) Scop] response to density of Cassida rubiginosa Muller (Coleoptera: Chrysomelidae) and plant competition. Biol. Control. 5:3138.CrossRefGoogle Scholar
Anonymous. 2006. Barcode of Life Database—BOLD. Washington, DC National Museum of Natural History.Google Scholar
Armstrong, K. F. and Ball, S. L. 2005. DNA barcodes for biosecurity: Invasive species identification. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:18131823.CrossRefGoogle Scholar
Bacher, S. and Schwab, F. 2000. Effect of herbivore density, timing of attack and plant community on performance of creeping thistle Cirsium arvense (L.) Scop. (Asteraceae). Biocontrol Sci. Technol. 10:343352.CrossRefGoogle Scholar
Bourdot, G. W. and Harvey, I. C. 1996. The potential of the fungus Sclerotinia sclerotiorum as a biological herbicide for controlling thistles in pasture. Plant Prot. Q. 11:259262.Google Scholar
Collier, T. R., Enloe, S. F., Sciegienka, J. K., and Menalled, F. D. 2007. Combined impacts of Ceutorhynchus litura and herbicide treatments for Canada thistle suppression. Biol. Control. 43:231236.CrossRefGoogle Scholar
Cruttwell McFadyen, R. E. 1998. Biological control of weeds. Ann. Rev. Entomol. 43:369393.CrossRefGoogle Scholar
Demers, A. M., Berner, D. K., and Backman, P. A. 2006. Enhancing incidence of Puccinia punctiformis, through mowing, to improve management of Canada thistle (Cirsium arvense). Biol. Control. 39:481488.CrossRefGoogle Scholar
Donald, W. W. 1990. Management and control of Canada thistle (Cirsium arvense). Rev. Weed Sci. 5:193250.Google Scholar
Eben, A. and Espinosa De Los Monteros, A. 2004. Ideas on the systematics of the genus Diabrotica Wilcox and other related leaf beetles. Pages 5973 in Jolivet, P., Santiago-Blay, J. A., and Schmitt, M., eds. New Developments in the Biology of Chrysomelidae. Hague, Netherlands SPB Academic.CrossRefGoogle Scholar
Friedli, J. and Bacher, S. 2001a. Direct and indirect effects of a shoot-base boring weevil and plant competition on the performance of creeping thistle, Cirsium arvense . Biol. Control. 22:219226.CrossRefGoogle Scholar
Friedli, J. and Bacher, S. 2001b. Mutualistic interaction between a shoot-base boring weevil and a rust fungus, two parasites of the weed creeping thistle. Oecologia. 129:571576.CrossRefGoogle Scholar
Ghosheh, H. Z. 2005. Constraints in implementing biological weed control: a review. Weed Biol. Manag. 5:8392.CrossRefGoogle Scholar
Hall, T. A. 1999. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Pages 9598 in Nucleic Acids Symposium Series 41. Oxford, UK Oxford University Press.Google Scholar
Harris, P. 2003. Classical Biological Control of Weeds Established Biocontrol Agent: Uphora cardui (L). Stem-Gall Fly. Ottawa, ON, Canada Agriculture and Agri-Food Canada. 5 p.Google Scholar
Hatcher, P. E. and Melander, B. 2003. Combining physical, cultural and biological methods: Prospects for integrated non-chemical weed management strategies. Weed Res. 43:303322.CrossRefGoogle Scholar
Hebert, P.D.N., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator . Proc. Natl. Acad. Sci. U. S. A. 101:1481214817.CrossRefGoogle ScholarPubMed
Hein, G. L. and Wilson, R. G. 2004. Impact of Ceutorhynchus litura feeding on root carbohydrate levels in Canada thistle (Cirsium arvense). Weed Sci. 52:628633.CrossRefGoogle Scholar
Jordon-Thaden, I. E. 2003. Chemistry of Cirsium and Carduus: a role in ecological risk assessment for biological control of weeds? Biochem. Syst. Ecol. 31:13531396.CrossRefGoogle Scholar
Kluth, S., Kruess, A., and Tscharntke, T. 2001. Interactions between the rust fungus Puccinia punctiformis and ectophagous and endophagous insects on creeping thistle. J. Appl. Ecol. 38:548556.Google Scholar
Kluth, S., Kruess, A., and Tscharntke, T. 2005. Effects of two pathogens on the performance of Cirsium arvense in a successional fallow. Weed Res. 45:261269.CrossRefGoogle Scholar
Kok, L. T. 2001. Classical biological control of nodding and plumeless thistles. Biol. Control. 21:206213.CrossRefGoogle Scholar
Lalonde, R. G. and Roitberg, B. D. 1992. Field studies of seed predation in an introduced weedy thistle. Oikos. 65:363370.CrossRefGoogle Scholar
Majka, C. G. and Lesage, L. 2008. Introduced leaf beetles of the Maritime Provinces, 7: Cassida rubiginosa Müller and Cassida flaveola Thunberg (Coleoptera: Chrysomelidae). Zootaxa. 1811:3756.CrossRefGoogle Scholar
Maw, M. G. 1976. An annotated list of insects associated with Canada thistle (Cirsium arvense) in Canada. Can. Entomol. 108:235244.CrossRefGoogle Scholar
McLennan, B. R., Ashford, R., and Devine, M. D. 1991. Cirsium arvense (L.) Scop. competition with winter wheat (Triticum aestivum L.). Weed Res. 31:409415.CrossRefGoogle Scholar
Moore, R. J. 1975. The biology of Canadian weeds. 13. Cirsium arvense (L.) Scop. Can. J. Plant Sci. 55:10331048.CrossRefGoogle Scholar
Morin, L., Reid, A. M., Sims-Chilton, N. M., Buckley, Y. M., Dhileepan, K., Hastwell, T., Nordblom, T. L., and Raghu, S. 2009. Review of approaches to evaluate the effectiveness of weed biological control agents. Biol. Control. 51:115.CrossRefGoogle Scholar
Morishita, D. W. 1999. Canada thistle. Pages 162174 in Sheley, R. L. and Petroff, J. K., eds. Biology and Management of Noxious Rangeland Weeds. Corvallis, OR Oregon State University.Google Scholar
Müller-Schärer, H. 1991. The impact of root herbivory as a function of plant density and competition: survival, growth and fecundity of Centaurea maculosa (Compositae) in field plots. J. Appl. Ecol. 28:759776.CrossRefGoogle Scholar
Müller-Schärer, H. and Schaffner, U. 2008. Classical biological control: exploiting enemy escape to manage plant invasions. Biol. Invasions. 10:859874.CrossRefGoogle Scholar
Müller-Schärer, H., Scheepens, P. C., and Greaves, M. P. 2000. Biological control of weeds in European crops: recent achievements and future work. Weed Res. 40:8398.CrossRefGoogle Scholar
Rechýnger, K. H. 1979. Cirsium Adans. Pages 231280. in Rechýnger, K. H., ed. Iranica, Flora, Tomus 139a. Compositae III—Cynareae. Graz, Austria: Akademishe Druck-und-Verlansanstalt.Google Scholar
Reed, C. C., Larson, D. L., and Larson, J. L. 2006. Canada thistle biological control agents on two South Dakota wildlife refuges. Nat. Areas J. 26:4752.CrossRefGoogle Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87:651701.CrossRefGoogle Scholar
Skinner, K., Smith, L., and Rice, P. 2000. Using noxious weed lists to prioritize targets for developing weed management strategies. Weed Sci. 48:640644.CrossRefGoogle Scholar
Steel, R.G.D. and Torrie, H. T. 1980. Principles and Procedures of Statistics. New York McGraw-Hill Book.Google Scholar
Szalanski, A. L., Roehrdanz, R. L., and Taylor, D. B. 2000. Genetic relationship among Diabrotica species (Coleoptera: Chrysomelidae) based on rDNA and mtDNA sequences. Fla. Entomol. 83:262267.Google Scholar
Thomas, R. F., Tworkoski, T. J., French, R. C., and Leather, G. R. 1994. Puccinia punctiformis affects growth and reproduction of Canada thistle (Cirsium arvense). Weed Technol. 8:488493.CrossRefGoogle Scholar
Tiley, G.E.D. 2010. Biological flora of the British Isles: Cirsium arvense (L.) Scop. J. Ecol. 98:938983.CrossRefGoogle Scholar
Van Driesche, R. G., Blossey, B., Hoddle, M., Lyon, S., and Reardon, R., eds. 2002. Biological Control of Invasive Plants in the Eastern United States. Morgantown, WV USDA Forest Service, FHTET-2002-04.Google Scholar
Ward, R. H. and Pienkowski, R. L. 1978. Biology of Cassida rubiginosa, a thistle-feeding shield beetle. Ann. Entomol. Soc. Am. 71:585591.CrossRefGoogle Scholar
Wheeler, A. G. and Whitehead, D. R. 1985. Larinus planus (F.) in North America (Coleoptera: Curculionidae: Cleoninae) and comments on biological control of Canada thistle. Proc. Entomol. Soc. Wash. 87:751758.Google Scholar
Zwolfer, H. 1969. Experimental feeding ranges of species of Chrysomelidae (Col.) associated with Cynareae (Compositae) in Europe. Tech. Bull. Commonw. Inst. Biol. Control. 12:115130.Google Scholar
Zwolfer, H. and Eichhorn, O. 1966. The host ranges of Cassida spp. (Col. Chrysomelidae) attacking Cynareae (Compositae) in Europe. Z, Angew. Entomol. 58:384397.CrossRefGoogle Scholar