Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T23:11:35.110Z Has data issue: false hasContentIssue false

High-Residue Cultivation Timing Impact on Organic No-Till Soybean Weed Management

Published online by Cambridge University Press:  20 March 2017

Gladis M. Zinati
Affiliation:
Associate Research Scientist, former Farming System Trial Leader, former Research Manager, and Executive Director, Rodale Institute, Kutztown, PA 18031
Rita Seidel
Affiliation:
Associate Research Scientist, former Farming System Trial Leader, former Research Manager, and Executive Director, Rodale Institute, Kutztown, PA 18031
Alison Grantham
Affiliation:
Associate Research Scientist, former Farming System Trial Leader, former Research Manager, and Executive Director, Rodale Institute, Kutztown, PA 18031
Jeff Moyer
Affiliation:
Associate Research Scientist, former Farming System Trial Leader, former Research Manager, and Executive Director, Rodale Institute, Kutztown, PA 18031
Victoria J. Ackroyd
Affiliation:
Visiting Scientist and Ecologist, United States Department of Agriculture - Agricultural Research Service, Beltsville Agricultural Research Center, Baltimore, Maryland 20705
Steven B. Mirsky*
Affiliation:
Visiting Scientist and Ecologist, United States Department of Agriculture - Agricultural Research Service, Beltsville Agricultural Research Center, Baltimore, Maryland 20705
*
*Corresponding author’s E-mail: [email protected]

Abstract

A cereal rye cover crop mulch can suppress summer annual weeds early in the soybean growing season. However, a multi-tactic weed management approach is required when annual weed seedbanks are large or perennial weeds are present. In such situations, the weed suppression from a cereal rye mulch can be supplemented with the use of high-residue cultivators which can prolong the weed-free period during soybean growth. Research trials were conducted to determine the optimum timing of high-residue cultivation for weed control in rolled-crimped cereal rye mulches. Treatments included three cultivation timings with a high-residue cultivator: early (3-4 wk after soybean planting (WAP)), intermediate (5-6 WAP), and late (7-8 WAP), a weed-free and no-cultivation control. Crop and weed measurement included cereal rye biomass, weed biomass, soybean population and biomass, and yield. Cereal rye biomass was 50% lower and weed biomass was three times greater in 2011 than in 2010 and 2012 due to 2011 being a dry year. There was no significant effect of cultivation timing on soybean population when compared to no-cultivation or hand-weeded treatments. While cultivation reduced weed biomass by 67% compared to no-cultivation, soybean yield was only improved by 12% in early and late cultivation treatments and 22% in intermediate cultivation treatment when compared to no-cultivation. Effective strategies for improving weed management by integrating the use of a high-residue cultivator in no-till organic systems could help existing organic field crop producers to reduce tillage while also encourage adoption of organic crop production by conventional growers who prefer reduced-tillage systems. Unlike traditional organic cultivation equipment, therefore, optimal timing of cultivation should be delayed several weeks in organic cover crop-based no-till planted soybean production as compared to the typical tillage-based approach to ensure both weed control and optimal yield.

Los residuos de un cultivo de cobertura de centeno pueden suprimir malezas anuales de verano temprano durante la temporada de crecimiento de la soja. Sin embargo, se requiere un manejo de malezas con tácticas múltiples cuando el banco de semillas de malezas anuales es grande o malezas perennes están presentes. En tales situaciones, la supresión de malezas por parte de los residuos del centeno pueden ser complementados con el uso de cultivadores especiales para condiciones de altos residuos, lo cuales pueden prolongar el período libre de malezas durante el crecimiento de la soja. Se realizaron ensayos de investigación para determinar el momento óptimo para cultivar con el objetivo de controlar malezas en residuos de centeno cortados y aplastados con rodillo (rolled-crimped) que formaron un acolchado sobre el suelo. Los tratamientos incluyeron tres momentos de cultivo con un cultivador para altos residuos: temprano (3−4 semanas después de la siembra de la soja (WAP)), intermedio (5−6 WAP), y tarde (7−8 WAP), un testigo libre de malezas y un testigo sin cultivo. Las mediciones del cultivo y de malezas incluyeron biomasa del centeno, biomasa de malezas, y biomasa, población y rendimiento de la soja. La biomasa del centeno fue 50% menor y la biomasa de las malezas tres veces mayor en 2011 que en 2010 y 2012 debido a que el 2011 fue un año seco. No hubo un efecto significativo del momento del cultivo sobre la población de la soja cuando se comparó con los tratamientos sin cultivo y con deshierba manual. Mientras que el cultivar redujo la biomasa de las malezas en 67% al compararse con el tratamiento sin cultivo, el rendimiento de la soja fue solamente mejorado en 12% en los tratamientos con cultivo temprano y tarde y 22% con el tratamiento con cultivo intermedio, cuando se compararon con el tratamiento sin cultivo. Estrategias efectivas para la mejora del manejo de malezas que integren el uso de un cultivador para altos residuos y sistemas orgánicos con cero labranza podrían ayudar a productores orgánicos de cultivos extensivos existentes a reducir la labranza mientras que también se promueve la adopción de producción orgánica de cultivos por parte de productores convencionales quienes prefieren sistemas de labranza reducida. A diferencia de cuando se usan equipos tradicionales de labranza para sistemas orgánicos, en sistemas de cero labranza para la producción de soja que incorporan cultivos de cobertura, el momento óptimo del cultivo debería ser retrasado varias semanas en comparación con el sistema típico basado en labranza, para asegurar tanto el control del malezas como el rendimiento óptimo.

Type
Weed Management-Techniques
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

3

Current address of second author: Berks County Conservation District, Leesport, PA 19533.

4

Current address of third author: Blue Apron, New York, NY 10031.

Associate Editor for this paper: Kevin Bradley, University of Missouri.

References

Literature Cited

Adeli, A, Tewolde, H, Jenkins, JN, Rowe, DE (2011) Cover crop use for managing broiler litter applied in the fall. Agron J 103:200210 Google Scholar
Barnes, JP, Putnam, AR (1983) Rye residues contribute weed suppression in no-tillage cropping systems. J Chem Ecol 9:10451057 Google Scholar
Bernstein, ER, Posner, JL, Stoltenberg, DE, Hedtcke, JL (2011) Organically-managed no-tillage rye-soybean systems: agronomic, economic, and environmental assessment. Agron J 103:11691179 Google Scholar
Calvino, PA, Sadras, VO, Andrade, FH (2003) Development, growth and yield of late-sown soybean in the southern Pampas. Eur J Agron 19:265275 Google Scholar
Carter, MR (2002) Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agron J 94:3847 Google Scholar
Chauhan, BS, Singh, RG, Mahajan, G (2012) Ecology and management of weeds under conservation agriculture. Crop Prot 38:5765 Google Scholar
Clark, A (2007) Managing cover crop profitably. 3rd edn. Beltsville, MD: Sustainable Agriculture Network Google Scholar
Dabney, SM, Delgado, JA, Meisinger, JJ, Schomberg, HH, Liebig, MA, Kaspar, T, Mitchell, J, Reeves, W (2010) Using cover crops and cropping systems for nitrogen management. Pages 231282 in Delgado JA & Follett RF, eds. Advances in Nitrogen Management for Water Quality. Ankeny, IA: Soil and Water Conservation Society Google Scholar
Davis, A (2010) Cover crop roller-crimper contributes to weed management in no-till soybean. Weed Sci 58:300309 Google Scholar
Delate, K, Cwach, D, Chase, C (2012) Organic no-till system effects on organic soybean, corn, and tomato production and economic performance in Iowa. Renew Agric. Food Syst. 27(Spec. Issue 01):4959 Google Scholar
Derpsch, R, Friedrich, T, Kassam, A, Li, H (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:125 Google Scholar
Frederick, JR, Camp, CR, Bauer, PJ (2001) Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci 41:759763 Google Scholar
Gunsolus, JL (1990) Mechanical and cultural weed control in corn and soybeans. Am J Altern Agric 5:114119 Google Scholar
Halford, C, Hamill, AS, Zhang, J, Doucet, C (2001) Critical period of weed control in no-till soybean and corn. Weed Technol 15:737744 CrossRefGoogle Scholar
Harder, DB, Sprague, CL, Renner, KA (2007) Effect of soybean row width and population on weeds, crop yield and economic return. Weed Technol 21:744752 Google Scholar
Hobbs, PR (2007) Conservation agriculture: what is it and why is it important for future sustainable food production. J Agric Sci 145:127137 Google Scholar
Holland, JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:125 Google Scholar
Kaspar, TC, Jaynes, DB, Parkin, TB, Moorman, TB (2007) Rye cover crop and gramagrass strip effects on NO3 concentration and load in tile drainage. J Environ Qual 36:15031511 Google Scholar
Keen, CL, Curran, WS (2016) Optimizing high-residue cultivation timing and frequency in reduced-tillage soybean and corn. Agron J 108:18971906 Google Scholar
Lal, R, Reicosky, DC, Hanson, JD (2007) Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res 93:112 CrossRefGoogle Scholar
Leonard, WH, Martin, JH (1963) Cereal Crops. New York: The Macmillan Co. 478 pGoogle Scholar
Liebman, M, Davis, AS (2000) Integration of soil, crop and weed management in low-external-input farming systems. Weed Sci 40:2747 Google Scholar
Macias, FA, Marin, D, Oliveros-Bastidas, A, Castellano, D, Simonet, AM, Molinillo, JMG (2005) Structure-activity relationship (SAR) studies of benzoxazinones, their degradation products, and analogues. Phytotoxicity on standard target species (STS). J Agric Food Chem 53:538548 Google Scholar
Mirsky, SB, Curran, WS, Mortensen, DA, Ryan, MR, Shumway, DL (2009) Control of cereal rye with a roller/crimper as influenced by cover crop phenology. Agron J 101:15891596 CrossRefGoogle Scholar
Mirsky, SB, Curran, WS, Mortensen, DA, Ryan, MR, Shumway, DL (2011) Timing of cover crop management effects on weed suppression in no-till planted soybean using a roller-crimper. Weed Sci 59:380389 CrossRefGoogle Scholar
Mirsky, SB, Ryan, MR, Curran, WS, Teasdale, JR, Maul, J, Spargo, JT, Moyer, J, Grantham, AM, Weber, D, Way, TR, Camargo, GG (2012) Conservation tillage issues: cover crop-based organic rotational production in the mid-Atlantic region, USA. Renew Agric Food Syst 27:3140 CrossRefGoogle Scholar
Mirsky, SB, Ryan, MR, Teasdale, JR, Curran, WS, Reberg-Horton, CS, Spargo, JT, Wells, MS, Keene, CL, Moyer, JW (2013) Overcoming weed management challenges in cover crop-based organic rotational no-till soybean production in the eastern US. Weed Technol 27:193203 Google Scholar
Mischler, RA, Curran, WS, Duiker, SW, Hyde, JA (2010) Use of a rolled-rye cover crop for weed suppression in no-till soybeans. Weed Technol 24:253261 Google Scholar
Mohler, CL, Teasdale, JR (1993) Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res 33:487499 CrossRefGoogle Scholar
Moore, MJ, Gillespie, TJ, Swanton, CJ (1994) Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine max) development. Weed Technol 8:512518 Google Scholar
Nord, EA, Curran, WS, Mortensen, DA, Mirsky, SB, Jones, BP (2011) Integrating multiple tactics for managing weeds in high residue no-till soybean. Agron J 103:15421551 Google Scholar
Oberholtzer, L, Dimitri, C, Jaenicke, EC (2012) International trade of organic food: evidence of US imports. Renew Agric Food Syst 28:255262 Google Scholar
Poffenbarger, HJ, Mirsky, SB, Weil, RR, Maul, JE, Kramer, M, Spargo, JT, Cavigelli, MA (2015) Biomass and nitrogen content of hairy vetch–cereal rye cover crop mixtures as influenced by species proportions. Agron J 107:20692082 Google Scholar
Qi, Z, Helmers, MJ (2009) Soil water dynamics under winter rye cover crop in central Iowa. Vadose Zone J 9:5360 CrossRefGoogle Scholar
Reberg-Horton, SC, Burton, JD, Danehower, DA, Ma, G, Monks, DW, Murphy, JP, Ranells, NN, Williamson, JD, Creamer, NG (2005) Changes over time in the allelochemical content of ten cultivars of rye. J Chem Ecol 31:179193 Google Scholar
Reicosky, DC, Forcella, F (1998) Cover crop and soil quality interactions in agroecosystems. J Soil Water Conserv 53:224229 Google Scholar
Rice, CP, Cai, G, Teasdale, JR (2012) Fate of benzoxazinoids in soil treated with rye cover crop. J Agric Food Chem 60:44714479 Google Scholar
Ruffo, ML, Bollero, GA (2003) Modeling rye and hairy vetch residue decomposition as a function of degree days and decomposition days. Agron J 95:900997 Google Scholar
Ruffo, ML, Bullock, DG, Bollero, GA (2004) Soybean yield as affected by biomass and nitrogen uptake of cereal rye in winter cover crop rotations. Agron J 96:800805 Google Scholar
Smith, AN, Reberg-Horton, SC, Place, GT, Meijer, AD, Arellano, C, Mueller, JP (2011) Rolled rye mulch for weed suppression in organic no-tillage soybeans. Weed Sci 59:224231 Google Scholar
Snapp, SS, Swinton, SM, Labarta, R, Mutch, D, Black, JR, Leep, R, Nyiraneza, J, O’Neil, K (2005) Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron J 97:322332 Google Scholar
Sooby, J, Landeck, J, Lipson, M (2007) National Organic Research Agenda: Outcomes from the Scientific Congress on Organic Agricultural Research. Santa Cruz, CA: Organic Farming Res. Foundation. 76 pGoogle Scholar
Stenberg, M, Stenberg, B, Rydberg, T (2000) Effects of reduced tillage and liming on microbial activity and soil properties in a weakly-structured soil. App Soil Ecol 14:135145 Google Scholar
Teasdale, JR, Mirsky, SB, Spargo, JT, Cavigelli, MA, Maul, JE (2012) Reduced-tillage organic corn production in a hairy vetch cover crop. Agron J 104:621628 Google Scholar
Teasdale, JR, Mohler, CL (1993) Light transmittance, soil–temperature, and soil–moisture under residue of hairy vetch and rye. Agron J 85:673680 Google Scholar
Teasdale, JR, Mohler, CL (2000) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385392 Google Scholar
Tillman, G, Schomberg, H, Phatak, S, Mullinix, B, Lachnicht, S, Timper, P, Olson, D (2004) Influence of cover crops on insect pests and predators in conservation tillage cotton. J Econ Entomol 97:12171232 Google Scholar
US Climate Data (2016) The US NOAA Climate Data, version 2.2. http://www.usclimatedata.com/climate/allentown/pennsylvania/united-states/uspa0025/2015/1. Accessed January 30, 2016Google Scholar
Westgate, ME, Peterson, CM (1993) Flower and pod development in water deficient soybeans (Glycine max (L.) Merr.). J Exp Bot 44:109117 Google Scholar
Williams, MM 2nd, Mortensen, DA, Doran, JW (2000) No-tillage soybean performance in cover crops for weed management in the western corn belt. J Soil Water Conserv 55:7984 Google Scholar