Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T17:03:02.222Z Has data issue: false hasContentIssue false

Herbicide Safeners Increase Creeping Bentgrass (Agrostis stolonifera) Tolerance to Pinoxaden and Affect Weed Control

Published online by Cambridge University Press:  23 February 2017

Matthew T. Elmore*
Affiliation:
Department of Crop and Soil Sciences, Texas A&M AgriLife, Dallas, TX 75252
James T. Brosnan
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996
Gregory R. Armel
Affiliation:
BASF Corp. Research Triangle Park, NC 27709
Jose J. Vargas
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996
Gregory K. Breeden
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996
*
Corresponding author's E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The herbicide pinoxaden is a phenylpyrazoline inhibitor of acetyl coenzyme A carboxylase. Research was conducted to determine the effects of pinoxaden (90 g ai ha−1) alone and in combination with herbicide safeners on creeping bentgrass injury as well as perennial ryegrass and roughstalk bluegrass control. Greenhouse experiments determined that herbicide safeners cloquintocet-mexyl, fenchlorazole-ethyl, and mefenpyr-diethyl were more effective in reducing creeping bentgrass injury from pinoxaden than benoxacor, isoxadifen-ethyl, and naphthalic-anhydride. Other experiments determined that creeping bentgrass injury from pinoxaden decreased as rates (0, 23, 45, 68, 90, 225, or 450 g ha−1) of cloquintocet-mexyl, fenchlorazole-ethyl, and mefenpyr-diethyl increased. On the basis of creeping bentgrass responses to various safener rates, safeners were applied at 68 and 450 g ha−1 in additional experiments to evaluate their effects on pinoxaden (90 g ha−1) injury to creeping bentgrass and efficacy against perennial ryegrass and roughstalk bluegrass. In these experiments, safeners mefenpyr-diethyl and cloquintocet-mexyl reduced pinoxaden-induced creeping bentgrass injury (from 25 to ≤ 5%) more than fenchlorazole-ethyl at 2 wk after treatment. Safeners reduced pinoxaden efficacy against roughstalk bluegrass. Perennial ryegrass was controlled > 80% by pinoxaden and herbicide safeners did not reduce control. Field experiments should evaluate pinoxaden in combination with cloquintocet-mexyl and mefenpyr-diethyl to optimize safener : herbicide ratios and rates for creeping bentgrass safety as well as perennial ryegrass and roughtstalk bluegrass control in different climates and seasons.

El herbicida pinoxaden es una inhibidor phenylpyrazoline de la encima acetyl coenzyme A carboxylase. Se realizó una investigación para determinar los efectos de pinoxaden (90 g ai ha−1) solo o en combinación con antídotos de herbicidas sobre el daño en el césped Agrostis stolonifera además del control de Lolium perenne y Poa trivialis. Los experimentos de invernadero determinaron que los antídotos cloquintocet-mexyl, fenchlorazole-ethyl, y mefenpyr-diethyl fueron más efectivos en reducir el daño en A. stolonifera causado por pinoxaden que benoxacor, isoxadifen-ethyl, y naphthalic-anhydride. Otros experimentos determinaron que el daño en A. stolonifera causado por pinoxaden disminuyó al aumentar las dosis (0, 23, 45, 68, 90, 225, ó 450 g ha−1) de cloquintocet-mexyl, fenchlorazole-ethyl, y mefenpyr-diethyl. Con base en las respuesta de A. stolonifera a varias dosis de antídotos, se aplicaron antídotos a 68 y 450 g ha−1 en experimentos adicionales para evaluar sus efectos en el daño por pinoxaden (90 g ha−1) en A. stolonifera y la eficacia contra L. perenne y P. trivialis. En estos experimentos los antídotos mefenpyr-diethyl y cloquintocet-mexyl redujeron el daño inducido por pinoxaden en A. stolonifera (de 25 a ≤ 5%) más que fenchlorazole-ethyl a 2 semanas después del tratamiento. Los antídotos redujeron la eficacia de pinoxaden para el control de P. trivialis. Sin embargo, L. perenne fue controlado >80% con pinoxaden y los antídotos no redujeron el control. Experimentos de campo deberían evaluar pinoxaden en combinación con cloquintocet-mexyl y mefenpyr-diethyl para optimizar la proporción de antídoto:herbicida y las dosis para la seguridad en A. stolonifera además del control de L. perenne y P. trivialis en diferentes climas y temporadas.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

Footnotes

Associate Editor for this paper: Scott McElroy, Auburn University.

References

Literature Cited

Anonymous (2005) Corsair product label. Nufarm Americas Inc. Document PIB.Corsair.0105. Burr Ridge, IL: Nufarm. 2 pGoogle Scholar
Anonymous (2008) Axial® product label. Crop Protection Inc. Document SCP 1256A-L1B 0308. Greensboro, NC: Syngenta. 15 pGoogle Scholar
Anonymous (2010a) Rescue® product label. Crop Protection UK Limited. Capital Park, Cambridge, UK: Syngenta. 7 pGoogle Scholar
Anonymous (2010b) Velocity® product label. U.S.A. Corp. Publication No. 2010-Vel-001. Walnut Creek, CA: Valent. 10 pGoogle Scholar
Anonymous (2011) Puma product label. Bayer CropScience LP. Publication No. US04514245D. Research Triangle Park, NC: Bayer. 13 pGoogle Scholar
Anonymous (2012a) Certainty® product label. Monsanto Company Publication No. 7101619-6. St. Louis, MO: Monsanto. 5 pGoogle Scholar
Anonymous (2012b) RimFire Max® safety data sheet. CropScience Publication No. 102000020887. Research Triangle Park, NC: Bayer. 10 pGoogle Scholar
Chitband, AA, Ghorbani, R, Abbasi, R, Nabizade, M (2013) Optmizing the dosage of pinoxaden with adjuvants to control of wild oat (Avena ludoviciana Durieu.). Int J Agron Plant Prod 4: 31573163 Google Scholar
Crooks, HL, York, AC, Jordan, DL (2004) Wheat tolerance to AE F130060 00 plus AE F115008 00 as affected by time of application and rate of the safener AE F107892. Weed Technol 18: 841845 Google Scholar
Cummins, I, Bryant, DN, Edwards, R (2009) Safener responsiveness and multiple herbicide resistance in the weed black-grass (Alopecurus myosuroides). Plant Biotechnol J 7: 807820 Google Scholar
Dernoeden, PH (2013) Creeping Bentgrass Management: Summer Stresses, Weeds and Selected Maladies. 2nd edn. Hoboken NJ: J. Wiley. Pp 108109 Google Scholar
Elmore, MT, Brosnan, JT, Armel, GR, Vargas, JJ, Breeden, GK (2015) Influence of herbicide safeners on creeping bentgrass (Agrostis stolonifera) tolerance to herbicides. Weed Technol 29: 550560 Google Scholar
Hatzios, KK, Burgos, N (2004) Metabolism-based herbicide resistance: regulation by safeners. Weed Sci 52: 454467 Google Scholar
Henry, GM, Hart, SE (2004) Velvet and creeping bentgrass tolerance to fenoxaprop. HortSci 39: 17681770 Google Scholar
Karcher, DE, Richardson, MD (2003) Quantifying turfgrass color using digital image analysis. Crop Sci 43: 943951 Google Scholar
Lycan, DW, Hart, SE (2004) Relative tolerance of four cool-season turfgrass species to sulfosulfuron. Weed Technol 18: 977981 Google Scholar
Lyman, GT, Throssell, CS, Johnson, ME, Stacey, GA, Brown, CD (2007) Golf course profile describes turfgrass, landscape, and environmental stewardship features. Appl Turf Sci doi:10. 1094/ATS-2007-1107-01-RSGoogle Scholar
McCullough, PE, Hart, SE (2008) Creeping bentgrass (Agrostis stolonifera) tolerance to sulfosulfuron. Weed Technol 22: 481485 Google Scholar
McIntosh, MS (1983) Analysis of combined experiments. Agron J 75: 153155 Google Scholar
Mohassel, MHR, Aliverdi, A, Rahimi, S (2011) Optimizing dosage of sethoxydim and fenoxaprop-p-ethyl with adjuvants to control wild oat. Ind Crops Prod 34: 15831587 Google Scholar
Morton, D, Weisenberger, D, Reicher, Z, Branham, B, Sharp, B, Gaussoin, R, Stier, J, Koeritz, E (2007) Evaluating bispyribac-sodium and sulfosulfuron for control of roughstalk bluegrass. HortSci 42: 17101714 Google Scholar
Muehlebach, M, Cederbaum, F, Cornes, D, Friedmann, AA, Glock, J, Hall, G, Indolese, AF, Kloer, DP, Goupil, GL, Maetzke, T, Meier, H, Schneider, R, Stoller, A, Szczepanski, H, Wendeborn, S, Widmer, H (2011) Aryldiones incorporating a [1,4,5]oxadiazepane ring. Part 2: chemistry and biology of the cereal herbicide pinoxaden. Pest Manag Sci 67: 14991521 Google Scholar
Penner, D (2000) Activator adjuvants. Weed Technol 14: 785791 Google Scholar
Richardson, MD, Karcher, DE, Purcell, LC (2001) Quantifying turfgrass cover using digital image analysis. Crop Sci 41: 18841888 Google Scholar
Rutledge, JM, Weisenberger, DV, Reicher, ZJ (2010) Bispyribac-sodium, sulfosulfuron, and interseeding creeping bentgrass for long-term control of roughstalk bluegrass HortSci 45: 283287 Google Scholar
Syngenta GreenCast (2010) Rescue herbicide overview. http://www.greencast.co.uk/uk/products-and-offers/herbicides/rescue.aspx. Accessed April 17, 2014Google Scholar
Turgeon, AJ, McCarty, LB, Christians, NE, eds (2009) Weed control in turf and ornamentals. 1st edn. Upper Saddle River, NJ: Pearson. Pp 1011 Google Scholar
Yaacoby, T, Hall, JC, Stephenson, GR (1991) Influence of fenchlorazole-ethyl on the metabolism of fenoxaprop-ethyl in wheat, barley and crabgrass. Pestic Biochem Physiol 41: 296304 Google Scholar