Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T06:58:57.341Z Has data issue: false hasContentIssue false

Herbicide Program Approaches for Managing Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) and Waterhemp (Amaranthus tuberculatus and Amaranthus rudis) in Future Soybean-Trait Technologies

Published online by Cambridge University Press:  20 January 2017

Christopher J. Meyer*
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Bryan G. Young
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Lawrence E. Steckel
Affiliation:
Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996
Kevin W. Bradley
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Mark M. Loux
Affiliation:
Ohio State University, Columbus, OH 43210
Vince M. Davis
Affiliation:
Department of Agronomy, University of Wisconsin-Madison, Madison WI 53706
Greg R. Kruger
Affiliation:
University of Nebraska-Lincoln, North Platte, NE 69101
Mohammad T. Bararpour
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Joseph T. Ikley
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Douglas J. Spaunhorst
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Thomas R. Butts
Affiliation:
Department of Agronomy, University of Wisconsin-Madison, Madison WI 53706
*
Corresponding author's E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Herbicide-resistant Amaranthus spp. continue to cause management difficulties in soybean. New soybean technologies under development, including resistance to various combinations of glyphosate, glufosinate, dicamba, 2,4-D, isoxaflutole, and mesotrione, will make possible the use of additional herbicide sites of action in soybean than is currently available. When this research was conducted, these soybean traits were still regulated and testing herbicide programs with the appropriate soybean genetics in a single experiment was not feasible. Therefore, the effectiveness of various herbicide programs (PRE herbicides followed by POST herbicides) was evaluated in bare-ground experiments on glyphosate-resistant Palmer amaranth and glyphosate-resistant waterhemp (both tall and common) at locations in Arkansas, Illinois, Indiana, Missouri, Nebraska, and Tennessee. Twenty-five herbicide programs were evaluated; 5 of which were PRE herbicides only, 10 were PRE herbicides followed by POST herbicides 3 to 4 wks after (WA) the PRE application (EPOST), and 10 were PRE herbicides followed by POST herbicides 6 to 7 WA the PRE application (LPOST). Programs with EPOST herbicides provided 94% or greater control of Palmer amaranth and waterhemp at 3 to 4 WA the EPOST. Overall, programs with LPOST herbicides resulted in a period of weed emergence in which weeds would typically compete with a crop. Weeds were not completely controlled with the LPOST herbicides because weed sizes were larger (≥ 15 cm) compared with their sizes at the EPOST application (≤ 7 cm). Most programs with LPOST herbicides provided 80 to 95% control at 3 to 4 WA applied LPOST. Based on an orthogonal contrast, using a synthetic-auxin herbicide LPOST improves control of Palmer amaranth and waterhemp over programs not containing a synthetic-auxin LPOST. These results show herbicides that can be used in soybean and that contain auxinic- or HPPD-resistant traits will provide growers with an opportunity for better control of glyphosate-resistant Palmer amaranth and waterhemp over a wide range of geographies and environments.

Amaranthus spp. resistentes a herbicidas continúan causando problemas de manejo en soja. Nuevas tecnologías para soja que están actualmente en desarrollo y que incluyen resistencia a varias combinaciones de glyphosate, glufosinate, dicamba, 2,4-D, isoxaflutole, y mesotrione, harán posible el uso de sitios de acción que no están actualmente disponibles para uso en soja. Cuando se realizó esta investigación, estas tecnologías estaban todavía bajo regulación y la evaluación de programas de herbicidas con la genética apropiada de soja en un solo experimento no era factible. Por esto, se evaluó la efectividad de varios programas de herbicidas (herbicidas PRE seguidos de herbicidas POST) en experimentos con suelo desnudo en localidades en Arkansas, Illinois, Indiana, Missouri, Nebraska, y Tennessee que tenían Amaranthus palmeri resistente a glyphosate y Amaranthus rudis y Amaranthus tuberculatus resistentes a glyphosate. Se evaluaron 25 programas de herbicidas; 5 de los cuales fueron solamente herbicidas PRE, 10 fueron herbicidas PRE seguidos por herbicidas POST 3 a 4 semanas después (WA) de la aplicación PRE (EPOST), y 10 fueron herbicidas PRE seguidos por herbicidas POST 6 a 7 WA de la aplicación PRE (LPOST). Los programas con herbicidas EPOST brindaron 94% de control o más de A. palmeri, A. tuberculatus, y A. rudis a 3 a 4 WA de la aplicación EPOST. En general, los programas con herbicidas LPOST resultaron en un período de emergencia de malezas en el cual las malezas típicamente competirían con el cultivo. Las malezas no fueron controladas completamente con los herbicidas LPOST porque el tamaño de las malezas fue mayor (≥15 cm) al compararse con su tamaño en la aplicación EPOST (≥7 cm). La mayoría de los programas con herbicidas LPOST brindaron 80 a 95% de control a 3 a 4 WA de la aplicación LPOST. Con base en un contraste ortogonal, el usar un herbicida de tipo auxina sintética LPOST mejoró el control de A. palmeri, A. rudis, y A. tuberculatus al compararse con programas que no contenían un herbicida de tipo auxina sintética LPOST. Estos resultados muestran que los herbicidas que pueden ser usados en soja resistente a herbicidas de tipo auxina o HPPD brindarán a los productores una oportunidad para controlar mejor A. palmeri, A. rudis, y A. tuberculatus resistentes a glyphosate, en un amplio rango de ambientes y geografías.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Footnotes

Associate Editor for this paper: Aaron G. Hager, University of Illinois.

References

Literature Cited

Anonymous (2011) Warrant herbicide product label. Monsanto Publication No. 36067J2-2. St. Louis, MO: Monsanto Company. 7 pGoogle Scholar
Anonymous (2013) Fierce herbicide product label. Valent Publication No. 2013-FIE-0001. Walnut Creek, CA: Valent U.S.A Corporation. 14 pGoogle Scholar
Bagavathiannan, MV, Norsworthy, JK (2013) Occurrence of arable weeds in roadside habitats: implications for herbicide resistance management. Proc Weed Sci Soc 53:163 [Abstract]Google Scholar
Bagavathiannan, MV, Dotray, P, Norsworthy, JK (2015) Post-harvest seed production potential of Palmer amaranth and waterhemp in the southern US. Proc South Weed Sci Soc 68:38 [Abstract]Google Scholar
Bell, MS, Hager, AG, Tranel, PJ (2013) Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460468 Google Scholar
Bensch, CN, Horak, MJ, Peterson, D (2003) Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743 Google Scholar
Chahal, GS, Johnson, WG (2012) Influence of glyphosate or glufosinate combinations with growth regulator herbicides and other agrochemicals in controlling glyphosate-resistant weeds. Weed Technol 26:638643 Google Scholar
Craigmyle, BD, Ellis, JM, Bradley, KW (2013a) Influence of herbicide programs on weed management in soybean with resistance to glufosinate and 2,4-D. Weed Technol 27:7884 Google Scholar
Craigmyle, BD, Ellis, JM, Bradley, KW (2013b) Influence of weed height and glufosinate plus 2,4-D combinations on weed control in soybean with resistance to 2,4D. Weed Technol 27:271280 Google Scholar
Heap, I (2015) International Survey of Herbicide-Resistant Weeds. http://www.weedscience.com/summary/home.aspx. Accessed February 14, 2015Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci 57:644651 Google Scholar
Jha, P, Norsworthy, JK, Riley, MB, Bielenberg, DG, Bridges, W Jr. (2009) Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci 56:729734 Google Scholar
Johnson, WG, Chahal, GS, Regeh, DL (2012) Efficacy of various corn herbicides applied preplant incorporated and preemergence. Weed Technol 26:220229 Google Scholar
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 199204 Google Scholar
Klingaman, TE, Oliver, LR (1994) Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci 42:523527 Google Scholar
Knezevic, SZ, Evans, SP, Mainz, M (2003) Row spacing influences the critical timing for weed removal in soybean (Glycine max). Weed Technol 17:666673 Google Scholar
Neve, P, Norsworthy, JK, Smith, KL, Zelaya, IA (2011) Modeling evolution and management of glyphosate resistance in Amaranthus palmeri . Weed Res 51:99112 Google Scholar
Norsworthy, JK, Griffith, GM, Scott, RC, Smith, KL, Oliver, LR (2008) Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108113 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, D. IV, Eubank, TW, Scott, RC (2013) Assessment of weed management practices and problem weeds in midsouth United States soybean: a consultant's perspective. Weed Technol 27:612622 Google Scholar
Schultz, JL, Chatham, LA, Riggins, CW, Tranel, PJ, Bradley, KW (2015) Distribution of herbicide resistances and molecular mechanisms conferring resistance in Missouri waterhemp (Amaranthus rudis Sauer) populations. Weed Sci 63:336345 Google Scholar
Sellers, BA, Smeda, RJ, Johnson, WG, Kendig, JA, and Ellersieck, MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333 Google Scholar
Sutton, P, Richards, C, Buren, L, Glasgow, L (2002) Activity of mesotrione on resistant weeds in maize. Pest Manag Sci 58:981984 Google Scholar
Steckel, LE (2007) The dioecious Amaranthus spp.: here to stay. Weed Technol 21:567570 Google Scholar
Tranel, PJ, Riggins, CW, Bell, MS, Hager, AG (2011) Herbicide resistances in Amaranthus tuberculatus: a call for new options. J Agric Food Chem 59:58085812 Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service (2015) Quick Stats. http://quickstats.nass.usda.gov/. Accessed February 6, 2015Google Scholar
Van Acker, RC, Swanton, CJ, Weise, SF (1993) The critical period of weed control in soybean [Glycine max (L.) Merr.]. Weed Sci 41:194200 Google Scholar
Webster, TM (2013) Southern Weed Science Society Weed Survey. Pages 275287 in Proceedings of the Southern Weed Science Society Annual Meeting. Houston, TX: Southern Weed Science Society Google Scholar
Webster, TM (2012) Southern Weed Science Society Weed Survey. Pages 267288 in Proceedings of the Southern Weed Science Society Annual Meeting. Charleston, SC: Southern Weed Science Society Google Scholar