Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T15:39:50.342Z Has data issue: false hasContentIssue false

Herbicide Options for Weed Control in Dry-Seeded Aromatic Rice in India

Published online by Cambridge University Press:  20 January 2017

Gulshan Mahajan
Affiliation:
Punjab Agricultural University, Ludhiana, Punjab, India
Bhagirath S. Chauhan*
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
*
Corresponding author's E-mail: [email protected]

Abstract

The looming water crisis and shortage of labor during rice transplanting in northwest India have led researchers to develop alternative methods to transition away from puddled transplanted rice. In this context, dry-seeded rice (DSR) is emerging as an efficient production technology to replace puddled transplanted rice. Weeds, however, are the main biological constraints to its success. A study comprising 12 treatments was conducted to evaluate the efficacy of PRE (pendimethalin and pyrazosulfuron) and POST herbicides (bispyribac, penoxsulam, and azimsulfuron) applied either alone or in a sequence for weed control in dry-seeded fine rice cv. ‘Punjab Mehak 1’. Results indicated that the single application of pendimethalin (750 g ai ha−1) PRE, pyrazosulfuron (15 g ai ha−1) PRE, bispyribac-sodium (25 g ai ha−1) POST, penoxsulam (25 g ai ha−1) POST, and azimsulfuron (20 g ai ha−1) POST reduced total weed biomass by 75, 68, 73, 70, and 72%, respectively, compared with the nontreated control at flowering stage of the crop. Azimsulfuron POST and pyrazosulfuron PRE proved effective against purple nutsedge and crowfootgrass, respectively. Chinese sprangletop, large crabgrass, and junglerice were effectively controlled with pendimethalin PRE. POST application of bispyribac-sodium and penoxsulam provided effective control of rice flatsedge. Compared to the nontreated control, grain yield following the single application of pendimethalin PRE, pyrazosulfuron PRE, bispyribac-sodium POST, penoxsulam POST, and azimsulfuron POST increased by 149, 119, 138, 124, and 144%, respectively. The sequential application of herbicides proved better than single applications. The lowest weed biomass was observed with the sequential application of pendimethalin PRE followed by azimsulfuron POST, and rice yielded 228% more than the nontreated control following this treatment. The results of this study are important for farmers growing DSR in making decisions regarding the application of POST herbicides, according to existing weed flora in the field.

La creciente crisis por escasez de agua y de mano de obra durante el trasplante de arroz en el noroeste de India ha llevado a los investigadores a desarrollar métodos alternativos para cambiar las prácticas de trasplante en lodo. En este contexto, el uso de siembra de arroz en seco (DSR) está surgiendo como una tecnología de producción eficiente para remplazar el trasplante de arroz en lodo. Sin embargo, las malezas son uno de los impedimentos biológicos más importantes para el éxito de esta tecnología. Se realizó un estudio compuesto de 12 tratamientos para evaluar la eficacia de herbicidas PRE (pendimethalin y pyroxasulfuron) y POST (bispyribac, penoxsulam, y azimsulfuron) aplicados ya sea solos o en secuencia para el control de malezas en arroz fino cv. ‘Punjab Mehak 1′ sembrado en seco. Los resultados indicaron que una sola aplicación PRE de pendimethalin (750 g ai ha−1), PRE de pyrazosulfuron (15 g ai ha−1), POST de bispyribac-sodium (25 g ai ha−1), POST de penoxsulam (25 g ai ha−1), y POST de azimsulfuron (20 g ai ha−1), redujo la biomasa total de malezas en 75, 68, 73, 70, y 72%, respectivamente, al compararse con el testigo no-tratado en el estado de floración del cultivo. Azimsulfuron POST y pyrazosulfuron PRE probaron ser efectivos contra Cyperus rotundus y Dacyloctenium aegyptium, respectivamente. Leptochloa chinensis, Digitaria sanguinalis y Echinochloa colona fueron controlados efectivamente con pendimethalin PRE. La aplicación POST de bispyribac-sodium y penoxsulam brindó un control efectivo de Cyperus iria. Al compararse con el testigo no-tratado, el rendimiento en grano después de una sola aplicación de pendimenthalin PRE, pyrazosulfuron PRE, bispyribac-sodium POST, penoxsulam POST, y azimsulfuron POST aumentó en 149, 119, 138, 124, y 144%, respectivamente. La aplicación secuencial de herbicidas probó ser mejor que las aplicaciones solas. La menor biomasa de malezas se observó con la aplicación secuencial de pendimethalin PRE seguido por azimsulfuron POST, y el arroz rindió 228% más que el testigo no-tratado. Los resultados de este estudio son importantes para los productores usando DSR y que toman decisiones en relación a la aplicación POST de herbicidas, según la flora de malezas existente en el campo.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akwar, N., Ehsanullah, K. J., and Ali, M. A. 2011. Weed management improves yield and quality of direct seeded rice. Aust. J. Crop Sci. 5:688694.Google Scholar
Azmi, M. and Mashor, M. 1995. Weed succession from transplanting to direct-seeding method in Kemubu rice area. Malay. J. BioSci. 6:143154.Google Scholar
Baloch, M. S., Hassan, G., and Morimoto, T. 2005. Weeding techniques in transplanted and wet-seeded rice in Pakistan. Weed Biol. Manage. 5:190196.Google Scholar
Baltazar, A. M. and De Datta, S. K. 1992. Weed management in rice. Weed Abs. 41:495597.Google Scholar
Bouman, B.A.M. 2003. Addressing the water shortage problem in rice systems: water saving irrigation technologies. Pages 519535 in Mew, T. M. et al., eds. Rice Science: Innovations and Impact for Livelihood. Los Baños, Philippines International Rice Research Institute and Beijing, China Chinese Academy of Engineering and Chinese Academy of Agricultural Sciences.Google Scholar
Chauhan, B. S. 2012. Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol. 26:113.CrossRefGoogle Scholar
Chauhan, B. S., Abeysekera, A. S. K., Kulatunga, S. D., and Wickrama, U. B. 2013. Performance of different herbicides in a dry-seeded rice system in Sri Lanka. Weed Technol. 27:459462.Google Scholar
Chauhan, B. S. and Abugho, S. B. 2012. Effect of growth stage on the efficacy of postemergence herbicides on four weed species of direct-seeded rice. Sci. World J. 2012. Article ID 123071.CrossRefGoogle Scholar
Chauhan, B. S. and Abugho, S. B. 2013. Weed management in mechanized-sown, zero-till dry-seeded rice. Weed Technol. 27:2833.CrossRefGoogle Scholar
Chauhan, B. S. and Johnson, D. E. 2010. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 105:221262.CrossRefGoogle Scholar
Chauhan, B. S. and Johnson, D. E. 2011. Row spacing and weed control timing affect yield of aerobic rice. Field Crops Res. 121:226231.CrossRefGoogle Scholar
Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J., and Jat, M. L. 2012. Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies. Adv. Agron. 117:315369.CrossRefGoogle Scholar
Chauhan, B. S. and Opeña, J. 2012. Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems. Field Crops Res. 137:5669.CrossRefGoogle Scholar
Chauhan, B. S. and Opeña, J. 2013. Weed management and grain yield of rice sown at low seeding rates in mechanized dry-seeded systems. Field Crops Res. 141:915.Google Scholar
Chauhan, B. S., Singh, V. P., Kumar, A., and Johnson, D. E. 2011. Relations of rice seeding rates to crop and weed growth in aerobic rice. Field Crops Res. 121:105115.Google Scholar
Estorninos, L. E. Jr., and Moody, K. 1988. Evaluation of herbicides for weed control in dry-seeded wetland rice (Oryza sativa). Philipp. J. Weed Sci. 15:5058.Google Scholar
Gitsopoulos, T. K. and Froud-Williams, R. J. 2004. Effect of oxadiargyl on direct-seeded rice and Echinochloa crus-galli under aerobic and anaerobic conditions. Weed Res. 44:329334.Google Scholar
[GOI] Government of India. 2011. The Mahatma Gandhi National Rural Employment Guarantee Act 2005. Ministry of Rural Development, Government of India. http://nrega.nic.in/netnrega/home.aspx.Google Scholar
Gressel, J. 2002. Preventing, delaying and mitigating gene flow from crops—rice as an example. Proceedings of the Seventh International Symposium on the Biosafety of Genetically Modified Organisms, Beijing, China.Google Scholar
Hira, G. S. 2009. Water management in northern states and the food security of India. J. Crop Improve. 23:136157.Google Scholar
Janiya, J. D. and Moody, K. 1988. Effect of time of planting, crop establishment method, and weed control method on weed growth and rice yield. Philipp. J. Weed Sci. 15:617.Google Scholar
Jordan, D. L., Miller, D. K., and Crawford, S. H. 1998. Barnyardgrass (Echinochloa crus-galli) control in dry-seeded rice (Oryza sativa) with soil applied and post emergence herbicide programs Weed Technol. 12:6973.CrossRefGoogle Scholar
Kim, S. C. and Ha, W. G. 2005. Direct seeding and weed management in Korea. Pages 181184 in Toriyama, K. et al., eds. Rice Is Life: Scientific Perspectives for the 21st Century. Los Banõs, Philippines International Rice Research Institute, and Tsukuba, Japan: Japan International Research Center for Agricultural Sciences.Google Scholar
Mahajan, G. and Chauhan, B. S. 2011. Effects of planting pattern and cultivar on weed and crop growth in aerobic rice system. Weed Technol. 25:521525.Google Scholar
Mahajan, G., Chauhan, B. S., and Johnson, D. E. 2009. Weed management in aerobic rice in Northwestern Indo-Gangetic Plains. J. Crop Improve. 23:366382.CrossRefGoogle Scholar
Mahajan, G., Chauhan, B. S., Timsina, J., Singh, P. P., and Singh, K. 2012. Crop performance and water- and nitrogen-use efficiencies in dry-seeded rice in response to irrigation and fertilizer amounts in northwest India. Field Crops Res. 134:5970.Google Scholar
Mahajan, G., Timsina, J., and Singh, K. 2011. Performance and water use efficiency of rice relative to establishment methods in northwestern Indo-Gangetic Plains. J. Crop Improve. 25:597617.CrossRefGoogle Scholar
McCauley, G. N., O'Barr, J. H., and Chandler, J. M. 2005. Evaluating the efficacy and economics of weed management systems using current commercial herbicides in early and late season treatments alone and in all combinations. in Water Management and Weed Science Research in Rice. Research Report. Beaumont, TX Rice Research Foundation.Google Scholar
Moorthy, B.T.S. and Das, T. K. 1998. Threshold level of weed umbrella sedge (Cyperus iria) in upland rice (O. sativa) under rainfed direct-seeded condition. Ind. J. Agric. Sci. 68:78.Google Scholar
Mortimer, A. M. and Hill, J. E. 1999. Weed species shifts in response to broad-spectrum herbicides in sub-tropical and tropical crops. Brighton Crop Prot. Conf. 2:425437.Google Scholar
Pellerin, K. J. and Webster, E. P. 2004. Imazethapyr at different rates and timings in drill and water seeded imidazolinone-tolerant rice. Weed Technol. 18:223227.CrossRefGoogle Scholar
Prasad, R. 2011. Aerobic rice systems. Adv. Agron. 111:207247.Google Scholar
Rodell, M., Velicigna, I., and Famiglietti, J. S. 2009. Satellite-based estimates of groundwater depletion in India. Nature (London) 460:9991002.CrossRefGoogle ScholarPubMed
Sharma, P. K., Bhushan, L., Ladha, J. K., Naresh, R. K., Gupta, R. K., Balasubramanian, B. V., and Bouman, B.A.M. 2002. Crop–water relations in rice–wheat cropping under different tillage systems and water-management practices in a marginally sodic, medium-textured soil. Pages 223235 in Bouman, B.A.M. et al., eds. Water-Wise Rice Production. Proceedings of the International Workshop on Water-Wise Rice Production. Los Banõs, Philippines International Rice Research Institute.Google Scholar
Singh, G. 2008. Integrated weed management in direct-seeded rice. Pages 161175 in Singh, Y. et al., eds. Direct Seeding of Rice and Weed Management in the Irrigated Rice–Wheat Cropping System of the Indo-Gangetic Plains. Pantnagar, India G.B. Pant University of Agriculture and Technology, and Los Baños, Philippines: International Rice Research Institute/Directorate of Experiment Station.Google Scholar
Singh, S., Bhusan, L., Ladha, J. K., Gupta, R. K., Rao, A. N., and Sivaprasad, B. 2006. Weed management in dry-seeded rice (Oryza sativa) cultivated in the furrow-irrigated raised-bed planting system. Crop Prot. 25:487495.Google Scholar
Singh, S., Chhokar, R. S., Gopal, R., Ladha, J. K., Gupta, R. K., Kumar, V., and Singh, M. 2009. Integrated weed management: a key to success for direct-seeded rice in the Indo-Gangetic Plains. Pages 261277 in Ladha, J. K. et al., eds. Integrated Crop and Resource Management in the Rice–Wheat System of South Asia. Los Baños, Philippines International Rice Research Institute/Directorate of Experiment Station.Google Scholar
Singh, Y., Singh, G., Johnson, D., and Mortimer, M. 2005. Changing from transplanted rice to direct seeding in the rice–wheat cropping system in India. Pages 198201 in Toriyama, K. et al., eds. Rice Is Life: Scientific Perspectives for the 21st Century. Los Baños, Philippines International Rice Research Institute, and Tsukuba, Japan: Japan International Research Center for Agricultural Sciences.Google Scholar
Tindall, K. V., Williams, B. J., Stout, M. J., Geaghan, J. P., Leonard, B. R., and Webster, E. P. 2005. Yield components and quality of rice in response to graminaceous weed, weed, density and rice stink bug population. Crop Prot. 24:991998.Google Scholar