Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T18:43:00.202Z Has data issue: false hasContentIssue false

Herbicide Application Strategies for the Control of Rigid Ryegrass (Lolium rigidum) in Wide-Row Faba Bean (Vicia faba) in Southern Australia

Published online by Cambridge University Press:  20 January 2017

Samuel G. L. Kleemann*
Affiliation:
School of Agriculture, Food, and Wine, The University of Adelaide, South Australia, Australia 5064
Gurjeet S. Gill
Affiliation:
School of Agriculture, Food, and Wine, The University of Adelaide, South Australia, Australia 5064
*
Corresponding author's E-mail: [email protected]

Abstract

Two field experiments were undertaken at Roseworthy, South Australia from 2006 to 2007 to evaluate the performance of herbicide application strategies for the control of herbicide-resistant rigid ryegrass in faba bean grown in wide rows (WR). The standard farmer practice of applying postsowing PRE (PSPE) simazine followed by POST clethodim to faba bean grown in WR provided consistent and high levels of rigid ryegrass control (≥ 96%) and caused a large reduction (P < 0.05) in spike production (≤ 20 spikes m−2) as compared with nontreated control (560 to 722 spikes m−2). Furthermore, this herbicide combination resulted in greatest yield benefits for WR faba bean (723 to 1,046 kg ha−1). Although PSPE propyzamide used in combination with shielded interrow applications of glyphosate or paraquat provided high levels of rigid ryegrass control (≥ 93%), these treatments were unable to reduce ryegrass spike density within the crop row (20 to 54 spikes m−2) to levels acceptable for continued cropping. Furthermore, a yield reduction (13 to 29%) was observed for faba bean in treatments with shielded application of nonselective herbicides and could be related to spray drift onto lower leaves. These findings highlight that shielded interrow spraying in WR faba bean could play an important role in the management of rigid ryegrass in southern Australia. However, timing of shielded interrow applications on weed control, crop safety, and issues concerning integration with more effective early-season control strategies require attention.

De 2006 a 2007, dos experimentos de campo fueron realizados en Roseworthy, al sur de Australia, para evaluar el desempeño de estrategias de aplicación de herbicidas en el control de Lolium rigidum resistente a herbicidas en frijol faba, cultivado en surcos anchos (WR). La práctica estándar de los agricultores de aplicar simazine después de la siembra PRE emergente (PSPE) seguido por clethodim POS emergente (POST) al frijol faba cultivado en WR, proporcionó niveles altos y consistentes de control de L. rigidum (≥96%) y causó una gran reducción (P<0.05) en producción de espigas (≤20 espigas m−2), cuando se comparó con el testigo no tratado (de 560 a 722 espigas m−2). Además, esta combinación de herbicidas proporcionó mayores beneficios en el rendimiento del frijol WR (de 723 a 1046 kg ha−1). Aunque cuando propyzamide PSPE usada en combinación con aplicaciones con pantalla entre surcos de glifosato o paraquat proporcionó altos niveles de control de L. rigidum (≥93%), estos tratamientos no pudieron reducir la densidad de espigas de L. rigidum dentro del surco del cultivo (de 20 a 54 espigas m−2) a niveles aceptables para la producción continua de cultivos. Además, una reducción del rendimiento de13 a 29% se observó en este cultivo en tratamientos con aplicación con pantalla de herbicidas no selectivos, la cual podría estar relacionada a la aspersión no intencional de las hojas inferiores. Estos resultados resaltan que la aspersión con pantalla entre surcos en frijol faba WR podría jugar un papel importante en el manejo de L. rigidum al sur de Australia. Sin embargo, se debe prestar atención al tiempo de las aplicaciones con pantalla entre surcos en el control de malezas, la seguridad del cultivo y los asuntos concernientes a la integración de estrategias de control más eficaz temprano durante el ciclo productivo.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Australian Glyphosate Sustainability Working Group. 2011. Australian glyphosate resistance register: summary. http://glyphosateresistance.org.au.Google Scholar
Boutsalis, P., Preston, C., and Gill, G. S. 2008. Current levels of herbicide resistance in broadacre farming across southern Australia. Pages 83 in Proceedings of the 16th Australian Weeds Conference. Cairns, North Queensland, Australia The Weed Society of Queensland.Google Scholar
Chauhan, B. S., Gill, G. S., and Preston, C. 2006. Influence of tillage systems on vertical distribution, seedling recruitment and persistence of rigid ryegrass (Lolium rigidum) seed bank. Weed Sci. 54:669676.Google Scholar
Collins, M. and Roche, J. 2002. Weed control in lupins using a new spray shield and other row crop techniques. Pages 484487 in Proceedings of the 13th Australian Weeds Conference. Perth, Western Australia, Australia Plant Protection Society of Western Australia.Google Scholar
Felton, W. L., Haigh, B. M., and Harden, S. 2004. Comparing weed competition in chickpea, faba bean, canola and wheat. Pages 304307 in Proceedings of the 14th Australian Weeds Conference. Wagga Wagga, New South Wales, Australia Weed Society of New South Wales.Google Scholar
Felton, W. L., Marcellos, H., and Murison, R. D. 1996. The effect of row spacing and seeding rate on chickpea yield in northern New South Wales. Pages 250253 in Proceedings of the 8th Australian Agronomy Conference. Queensland, Australia The Australian Society of Agronomy.Google Scholar
Fischer, R. A. and Miles, R. E. 1973. The role of spatial pattern in competition between crop plants and weeds. A theoretical analysis. Math. Biosci. 18:335350.Google Scholar
French, R. J. and Harries, M. 2006. A role for wide rows in lupin cultivation in Western Australia. in Proceedings of the 13th Australian Agronomy Conference. Perth, Western Australia, Australia The Australian Society of Agronomy. http://www.regional.org.au/au/asa/2006/concurrent/systems/4557_frenchrj.htm.Google Scholar
Gallagher, R. S., Steadman, K. J., and Crawford, A. D. 2004. Alleviation of dormancy in annual ryegrass (Lolium rigidum) seeds by hydration and after-ripening. Weed Sci. 52:968975.Google Scholar
Genstat 5 Committee. 1993. Genstat 5, Release 3, Reference Manual. Oxford, Great Britain Clarendon.Google Scholar
Gill, G. S. 1996. Why annual ryegrass is a problem in Australian agriculture. Plant Prot. Q. 11:193195.Google Scholar
Hashem, A., Collins, R. M., and Bowran, D. G. 2011. Efficacy of interrow weed control techniques in wide row narrow-leaf lupin. Weed Technol. 25:135140.CrossRefGoogle Scholar
Hashem, A., Douglas, A., Pathan, S., and Peltzer, S. C. 2008. Control and seed production of annual ryegrass in wide row lupins in WA wheatbelt. Pages 480482 in Proceedings of the 16th Australian Weeds Conference. Cairns, North Queensland, Australia The Weed Society of Queensland.Google Scholar
Hilgenfeld, K. L., Martin, A. R., Mortensen, D. A., and Mason, S. C. 2004. Weed management in glyphosate resistant soybean system; weed emergence patterns in relation to glyphosate treatment timing. Weed Technol. 18:277283.Google Scholar
Kleemann, S. G. L. and Gill, G. S. 2008. Row spacing, water use, and yield of wheat (Triticum aestivum), barley (Hordeum vulgare) and faba bean (Vicia faba). in Proceedings of the 14th Australian Agronomy Conference. Adelaide, South Australia, Australia The Australian Society of Agronomy. http://www.regional.org.au/au/asa/2008/poster/agronomy-landscape/5752_kleemannsgl.htm.Google Scholar
Lemerle, D., Verbeek, B., and Coombes, N. 1995. Losses in grain yield of winter crops from Lolium rigidum competition depend on crop species, cultivar and season. Weed Res. 35:503509.CrossRefGoogle Scholar
Leys, A. R., Plater, B., and Cullis, B. 1988. Response of six temperate annual grasses to six selective herbicides. Plant Prot. Q. 3:163168.Google Scholar
McDonald, G. K. 2003. Competitiveness against grass weeds in field pea genotypes. Weed Res. 43:4858.Google Scholar
Osten, V., Wu, H., Walker, S., Wright, G., and Shields, A. 2006. Weeds and summer crop row spacing studies in Queensland. Pages 347350 in Proceedings of the 15th Australian Weeds Conference. Adelaide, South Australia, Australia Weed Management Society of South Australia.Google Scholar
Peltzer, S. C., Hashem, A., Osten, V. A., Gupta, M. L., Diggle, A. J., Riethmuller, G. P., Douglas, A., Moore, J. M., and Koetz, E. A. 2009. Weed management in wide-row cropping systems: a review of current practices and risks for Australian farming systems. Crop Pasture Sci. 60:395406.Google Scholar
Poole, M. L. and Gill, G. S. 1987. Competition between crops and weeds in southern Australia. Plant Prot. Q. 2:8689.Google Scholar
Powles, S. B. and Bowran, D. G. 2000. Crop weed management systems. Pages 287306 in Sindel, B. M., ed. Australian Weed Management Systems. Victoria, Australia Meredith.Google Scholar
Powles, S. B. and Preston, C. 2006. Evolved glyphosate in plants: biochemical and genetic basis of resistance. Weed Technol. 20:282289.Google Scholar
Preston, C., Roush, R. T., and Powles, S. B. 1999. Herbicide resistance in weeds of southern Australia: why are we the worst in the world? Pages 454459 in Proceedings of the 12th Australian Weeds Conference. Hobart, Tasmania, Australia Tasmanian Weeds Society.Google Scholar
Rerkasem, K., Stern, W. R., and Goodchild, N. A. 1980. Associated growth of wheat and annual ryegrass. 1. Effect of varying total density and proportion in mixtures of wheat and annual ryegrass. Aust. J. Agric. Res. 31:549658.Google Scholar
Wells, R. 1993. Dynamics of soybean growth in variable planting patterns. Agron. J. 85:4448.Google Scholar