Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T19:44:32.205Z Has data issue: false hasContentIssue false

Grafting Imparts Glyphosate Resistance in Soybean

Published online by Cambridge University Press:  20 January 2017

Linjian Jiang
Affiliation:
Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center/The Ohio State University, Wooster, Ohio 44691
Xiulan Xu
Affiliation:
Department of Plant Pathology, Ohio Agricultural Research and Development Center/The Ohio State University, Wooster, Ohio 4469
Zhaohu Li
Affiliation:
State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, 2#, Yuanmingyuan Xilu, Haidian District, Beijing 100193, P. R. China
Douglas Doohan*
Affiliation:
Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center/The Ohio State University, Wooster, Ohio 44691
*
Corresponding author's Email: [email protected]; [email protected]

Abstract

Grafting is a widely-adopted cultural method to incorporate desired traits of rootstock with those of the scion and has been used successfully to address many biotic and abiotic stresses, including drought/waterlogging, insects, and diseases. However, it is not known if a herbicide resistance trait can be transferred across a graft union. Using Roundup Ready® (RR; glyphosate-resistant) soybean grafted with conventional (CN; nontransgenic and glyphosate-sensitive) soybean, we show that grafting is capable of transferring glyphosate resistance from RR rootstocks to CN scions. Grafts of CN/CN (scion/rootstock), CN/RR, RR/CN, and RR/RR were treated with potassium salt of glyphosate at 0.28, 0.84 and 1.68 kg ae ha−1. The CN/RR plants survived glyphosate treatment at 0.84 and 1.68 kg ha−1 while CN/CN plants were killed, indicating that glyphosate resistance is systemically mobile across the graft union. Intraspecies transfer of glyphosate resistance was unidirectional from root to shoot, since RR/CN plants were killed by glyphosate. The glyphosate resistance trait is conferred by CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS); therefore, we further examined whether CP4-EPSPS played a role in the phenomenon. CP4-EPSPS was detected in the CN scion of CN/RR plants by enzyme-linked immunosorbent assay (ELISA) but only 0.001% of that detected in RR leaf. This concentration is unlikely to have contributed significantly to the glyphosate resistance observed in CN/RR plants. Amino acid systemic trafficking and/or tissue specific glyphosate resistance are more likely the reasons for this phenomenon. These results show that grafting a transgenic herbicide-resistant rootstock to a nonresistant scion can confer resistance to the entire plant.

El injertar es una práctica cultural ampliamente adoptada para combinar caracteres deseados de un patrón con aquellos del injerto y ha sido utilizada exitosamente para lidiar con muchos estreses bióticos y abióticos, incluyendo sequía/inundación, insectos y enfermedades. Sin embargo, no se sabe si el carácter de resistencia a herbicidas puede ser transferido a través de la unión del injerto. Usando soya resistente a glyphosate (RR) injertada con soya no resistente a glyphosate (CN), nosotros demostramos que los injertos son capaces de transferir la resistencia a glyphosate de un patrón resistente a tejido convencional injertado. Injertos de CN/CN (injerto/patrón), CN/RR, RR/CN, y RR/RR fueron tratados con sal potásica de glyphosate a 0.28, 0.84 y 1.68 kg ae ha−1. Las plantas CN/RR sobrevivieron al tratamiento con glyphosate a 0.84 y 1.68 kg ha−1, mientras que las plantas CN/CN murieron, lo que indica que la resistencia a glyphosate es móvil sistémicamente a través de la unión en el injerto. En vista de que glyphosate mató a las plantas RR/CN, la transferencia intra-específica de resistencia a glyphosate fue unidireccional desde la raíz al tejido aéreo,. El carácter de resistencia a glyphosate es conferido por CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS), por lo que examinamos si CP4-EPSPS jugó algún rol en el fenómeno observado. por medio de un ensayo de inmunoabsorción ligado a enzimas (ELISA), se detectó CP4-EPSPS en el injerto CN de plantas CN/RR, pero solamente un 0.001% de los niveles detectados en hojas RR. Esta concentración es poco probable que haya contribuido en forma significativa a la resistencia a glyphosate observada en plantas CN/RR. Tráfico sistémico de amino ácidos y/o resistencia a glyphosate en tejidos específicos son probablemente las razones que explican este fenómeno. Estos resultados muestras que injertar tejido sin resistencia a herbicidas sobre un patrón resistente puede conferir resistencia a toda la planta.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barry, G. F., Kishore, G. M., Padgette, S. R., and Stallings, W. C. 1997. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases. US patent No. 5, 633, 435.Google Scholar
Fischer, W. N., Andre, B., Rentsch, D., Krolkiewicz, S., Tegeder, M., Breitkreuz, K., and Frommer, W. B. 1998. Amino acid transport in plants. Trends Plant Sci. 3:188195.CrossRefGoogle Scholar
Gambino, G., Gribaudo, I., Leopold, S., Schartl, A., and Laimer, M. 2005. Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep. 24:655662.Google Scholar
Grothaus, G. D., Bandla, M., Currier, T., Giroux, R., Jenkins, G. R., Lipp, M., Shan, G., Stave, J. W., and Pantella, V. 2006. Immunoassay as an analytical tool in agricultural biotechnology. J. AOAC Int. 89:913928.Google Scholar
Haroldsen, V. M., Szczerba, M. W., Aktas, H., Lopez-Baltazar, J., Odias, M. J., Chi-Ham, C. L., Labavitch, J. M., Bennett, A. B., and Powell, A. L. T. 2012. Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement. Front. Plant Sci. 3:39.Google Scholar
James, C. 2012. Global status of commercialized biotech/GM crops: 2011. http://www.isaaa.org/. Accessed: July 26, 2012.Google Scholar
Lev-Yadun, S. and Sederoff, R. 2001. Grafting for transgene containment. Nature Biotech. 19:1104.Google Scholar
Lusser, M., Parisi, C., Plan, D., and Rodríguez-Cerezo, E. 2011. New plant breeding techniques: State-of-the-art and prospects for commercial development. Institute for Prospective Technological Studies. Joint Research Centre, European Commission. DOI: .Google Scholar
Mitani, N., Kobayashi, S., Nishizawa, Y., Takeshi, K., and Matsumoto, R. 2006. Transformation of trifoliate orange with rice chitinase gene and the use of the transformed plant as a rootstock. Sci. Hortic. 108:439441.Google Scholar
Monsanto Company. 2009. Roundup WeatherMAX herbicide label. http://fs1.agrian.com/pdfs/Roundup_WeatherMAX_Herbicide_Label4a.pdf. Accessed: October 31, 2012.Google Scholar
Mudge, K., Janick, J., Scofield, S., and Goldschmidt, E. E. 2009. A history of grafting. Hortic. Rev. 35:437493.CrossRefGoogle Scholar
Pouget, R. 1990. The history of phylloxera control in vines in France (1868–1895). Paris, France INRA. 157 p.Google Scholar
Windt, C. W., Vergeldt, F. J., de Jager, P. A., and van As, H. 2006. MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato, and tobacco. Plant Cell Environ. 29:17151729.Google Scholar