Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-18T22:57:35.215Z Has data issue: false hasContentIssue false

Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifolia) in Nebraska: Confirmation and Response to Postemergence Corn and Soybean Herbicides

Published online by Cambridge University Press:  22 March 2017

Zahoor A. Ganie
Affiliation:
Graduate Research Assistant and Assistant Professor, Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
Amit J. Jhala*
Affiliation:
Graduate Research Assistant and Assistant Professor, Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
*
*Corresponding author’s E-mail: [email protected]

Abstract

Common ragweed is an important broadleaf weed in agronomic crops in the northcentral United States. A common ragweed biotype in glyphosate-resistant (GR) soybean production field in southeast Nebraska was not controlled after sequential applications of glyphosate at the labeled rate. The objectives of this study were to confirm GR common ragweed in Nebraska by quantifying the level of resistance in greenhouse and field whole-plant dose-response studies and to evaluate the response of the putative GR common ragweed to POST corn and soybean herbicides. Greenhouse whole-plant dose-response studies confirmed 7- and 19-fold resistance to glyphosate compared to the known glyphosate-susceptible (GS) biotype based on biomass reduction and control estimates, respectively. Field dose-response studies conducted in 2015 and 2016 at the putative GR common ragweed research site suggested that glyphosate doses equivalent to 15- and 40-times the labeled rate (1,260 gaeha–1) were required for 90% control and biomass reduction, respectively. Response of GR common ragweed to POST soybean herbicides in greenhouse studies indicated ≥89% control with acifluorfen, fomesafen, fomesafen plus glyphosate, glyphosate plus dicamba or 2,4-D choline, glufosinate, imazamox plus acifluorfen, and lactofen. POST corn herbicides, including 2,4-D, bromoxynil, diflufenzopyr plus dicamba, glufosinate, halosulfuron-methyl plus dicamba, mesotrione plus atrazine, and tembotrione provided ≥87% control, indicating that POST herbicides with distinct modes of action are available in corn and soybean for effective control of GR common ragweed. Results also suggested a reduced efficacy of the acetolactate synthase (ALS)-inhibiting herbicides tested in this study for control of GR and GS biotypes, indicating further research is needed to determine whether this biotype has evolved multiple herbicide resistance.

Ambrosia artemisiifolia es una maleza de hoja ancha importante en cultivos agronómicos en el centro norte de Estados Unidos. Un biotipo de A. artemisiifolia resistente a glyphosate (GR) no fue controlado en un campo de producción de soja en el sureste de Nebraska, después de aplicaciones secuenciales de glyphosate a la dosis de la etiqueta. Los objetivos de este estudio fueron confirmar la existencia de A. artemisiifolia GR en Nebraska cuantificando el nivel de resistencia con estudios de respuesta a dosis en invernadero y en campo y evaluar la respuesta de A. artemisiifolia GR putativa a herbicidas POST para maíz y soja. Los estudios de respuesta a dosis en invernadero con plantas enteras confirmaron una resistencia a glyphosate 7 y 19 veces mayor al compararse con un biotipo con susceptibilidad conocida a glyphosate (GS), según los estimados de reducción de biomasa y de control, respectivamente. Los estudios de respuesta a dosis en campo realizados en 2015 y 2016 en un lugar experimental con A. artemisiifolia GR putativa sugirió que se requirieron dosis equivalentes a 15 y 40 veces la dosis de la etiqueta (1,260 gaha−1) para alcanzar un 90% de control y un 90% de reducción de la biomasa, respectivamente. La respuesta en estudios de invernadero de A. artemisiifolia GR a herbicidas POST para soja indicó ≥89% de control con acifluorfen, fomesafen, fomesafen más glyphosate, glyphosate más dicamba o 2,4-D choline, glufosinate, imazamox más acifluorfen, y lactofen. Herbicidas POST para maíz, incluyendo 2,4-D, bromoxynil, diflufenzopyr más dicamba, glufosinate, halosulfuron-methyl más dicamba, mesotrione más atrazine, y tembotrione brindaron ≥87% de control, indicando que herbicidas POST con modos de acción distintivos están disponibles en maíz y soja para el control efectivo de A. artemisiifolia GR. Los resultados también sugirieron que existe una eficacia reducida con herbicidas inhibidores de acetolactate synthase (ALS) evaluados en este estudio para el control de biotipos GR y GS, lo que indica que se necesita investigación adicional para determinar si este biotipo ha evolucionado resistencia a múltiples herbicidas.

Type
Weed Management-Major Crops
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Aaron Hager, University of Illinois.

References

Literature Cited

Bassett, IJ, Crompton, CW (1975) The biology of Canadian weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can J Plant Sci 55:463476 CrossRefGoogle Scholar
Brewer, CE, Oliver, LR (2009) Confirmation and resistance mechanisms in glyphosate-resistant common ragweed (Ambrosia artemisiifolia) in Arkansas. Weed Sci 57:567573 CrossRefGoogle Scholar
Chahal, GS, Johnson, WG (2012) Influence of glyphosate or glufosinate combinations with growth regulator herbicides and other agrochemicals in controlling glyphosate-resistant weeds. Weed Technol 26:638643 CrossRefGoogle Scholar
Chahal, PS, Aulakh, JS, Rosenbaum, K, Jhala, AJ (2015) Growth stage affects dose response of selected glyphosate-resistant weeds to premix of 2,4-D choline and glyphosate (Enlist Duo™ Herbicide*). J Agri Sci 7:110. http://dx.doi.org/10.5539/jas.v7n11p1 Google Scholar
Chandi, A, Jordan, DL, York, AC, Lassiter, BR (2012) Confirmation and management of common ragweed (Ambrosia artemisiifolia) resistant to diclosulam. Weed Technol 26:2936 CrossRefGoogle Scholar
Chikoye, D, Swanton, CJ, Weise, SF (1995) Influence of common ragweed (Ambrosia artemisiifolia) time of emergence and density on white bean (Phaseolus vulgaris). Weed Sci 43:375380 CrossRefGoogle Scholar
Clewis, SB, Askew, SD, Wilcut, JW (2001) Common ragweed interference in peanut. Weed Sci 49:768772 CrossRefGoogle Scholar
Coble, HD, Williams, FM, Ritter, RL (1981) Common ragweed (Ambrosia artemisiifolia) interference in soybeans (Glycine max). Weed Sci 29:339342 CrossRefGoogle Scholar
Cowbrough, MJ, Brown, RB, Tardif, FJ (2003) Impact of common ragweed (Ambrosia artemisiifolia) aggregation on economic thresholds in soybean. Weed Sci 51:947954 CrossRefGoogle Scholar
Craigmyle, BD, Ellis, JM, Bradley, KW (2013) Influence of weed height and glufosinate plus 2,4-D combinations on weed control in soybean with resistance to 2,4-D. Weed Technol 27:271280 CrossRefGoogle Scholar
Dickerson, CT, Sweet, RD (1971) Common ragweed ecotypes. Weed Sci 19:6466 CrossRefGoogle Scholar
Everman, WJ, Burke, IC, Allen, JR, Collins, J, Wilcut, JW (2007) Weed control and yield with glufosinate-resistant cotton weed management systems. Weed Technol 21:695701 CrossRefGoogle Scholar
Friedman, J, Barrett, SCH (2008) High outcrossing in the annual colonizing species Ambrosia artemisiifolia (Asteraceae). Ann Bot 101:13031309 CrossRefGoogle ScholarPubMed
Fumanal, B, Chauvel, B, Bretagnolle, F (2007) Estimation of pollen and seed production of common ragweed in France. Ann Agric Environ Med 14:233236 Google ScholarPubMed
Ganie, ZA, Sandell, LD, Mithila, J, Kruger, GR, Marx, D, Jhala, AJ (2016) Integrated management of glyphosate-resistant giant ragweed (Ambrosia trifida) with tillage and herbicides in soybean. Weed Technol 30:4556 CrossRefGoogle Scholar
Gebben, AI (1965) The Ecology of Common Ragweed, Ambrosia artimisiifolia (L.), in Southeastern Michigan. Ph.D dissertation. Ann Arbor, MI: University of MichiganGoogle Scholar
Heap, I (2016) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed January 24, 2016Google Scholar
Hugie, JA, Bollero, GA, Tranel, PJ, Riechers, DE (2008) Defining the rate requirements for synergism between mesotrione and atrazine in redroot pigweed (Amaranthus retroflexus). Weed Sci 56:265270 CrossRefGoogle Scholar
Jhala, A, Sandell, LD, Knezevic, S, Kruger, GR, Wilson, RG (2014) Herbicide-Resistant Weeds in Nebraska. http://extensionpubs.unl.edu/publication/9000016369219/herbicide-resistant-weeds-in-nebraska/. Accessed July 8, 2016Google Scholar
Jordan, T, Nice, G, Smeda, R, Sprague, C, Loux, M (2007) Biology and Management of Common Ragweed. http://www.extension.purdue.edu/extmedia/BP/GWC-14.pdf. Accessed August 1, 2016Google Scholar
Kaur, S, Sandell, LD, Lindquist, JL, Jhala, AJ (2014) Glyphosate-resistant giant ragweed (Ambrosia trifida) control in glufosinate-resistant soybean. Weed Technol 28:569577 CrossRefGoogle Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840848 CrossRefGoogle Scholar
Mayer, DG, Butler, DG (1993) Statistical validation. Ecol Model 68:2132 CrossRefGoogle Scholar
Miller, MR, Norsworthy, JK (2016) Evaluation of herbicide programs for use in a 2,4-D–resistant soybean technology for control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Weed Technol 30:366376 CrossRefGoogle Scholar
Parrish, JT (2015) Investigations into Multiple–Herbicide-Resistant Ambrosia artemisiifolia (Common Ragweed) in Ohio and Glyphosate-Resistance Mechanisms. Ph.D dissertation. Columbus, OH: The Ohio State University. 68 pGoogle Scholar
Patzoldt, WL, Tranel, PJ, Alexander, AL, Schmitzer, PR (2001) A common ragweed population resistant to cloransulam-methyl. Weed Sci 49:485490 CrossRefGoogle Scholar
Pollard, JM (2007) Identification and Characterization of Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifolia L.). M.S thesis. Columbia, MO: University of Missouri. 25 pGoogle Scholar
Ritz, C, Streibig, JC (2005) Bioassay analysis using R. J Statist Software 12:122 CrossRefGoogle Scholar
Rogers, CA, Wayne, PM, Macklin, EA, Muilenberg, ML, Wagner, CJ, Epstein, PR, Bazzaz, FA (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 114:865869 CrossRefGoogle ScholarPubMed
Roman, ES, Murphy, SD, Swanton, CJ (2000) Simulation of Chenopodium album seedling emergence. Weed Sci 48:217224 CrossRefGoogle Scholar
Rousonelos, SL, Lee, RM, Moreira, MS, VanGessel, MJ, Tranel, PJ (2012) Characterization of a common ragweed (Ambrosia artemisiifolia) population resistant to ALS- and PPO-inhibiting herbicides. Weed Sci 60:335344 CrossRefGoogle Scholar
Saint-Louis, S, DiTommaso, A, Watson, AK (2005) A common ragweed (Ambrosia artemisiifolia) biotype in southwestern Québec resistant to linuron. Weed Technol 19:737743 CrossRefGoogle Scholar
Sarangi, D, Irmak, S, Lindquist, JL, Knezevic, SZ, Jhala, AJ (2016) Effect of water stress on the growth and fecundity of common waterhemp (Amaranthus rudis). Weed Sci 64:4252 CrossRefGoogle Scholar
Sarangi, D, Sandell, LD, Knezevic, SZ, Aulakh, JS, Lindquist, JL, Irmak, S, Jhala, AJ (2015) Confirmation and control of glyphosate-resistant common waterhemp (Amaranthus rudis) in Nebraska. Weed Technol 29:8292 CrossRefGoogle Scholar
Shurtleff, JL, Coble, HD (1985) Interference of certain broadleaf weed species in soybean (Glycine max). Weed Sci 33:654657 CrossRefGoogle Scholar
Simard, MJ, Benoit, DL (2011) Effect of repetitive mowing on common ragweed (Ambrosia artemisiifolia L.) pollen and seed production. Ann Agric Environ Med 18:5562 Google ScholarPubMed
Taylor, JB, Loux, MM, Harrison, SK, Regnier, E (2002) Response of ALS-resistant common ragweed (Ambrosia artemisiifolia) and giant ragweed (Ambrosia trifida) to ALS-inhibiting and alternative herbicides. Weed Technol 16:815825 CrossRefGoogle Scholar
Van Wely, AC, Soltani, N, Robinson, DE, Hooker, DC, Lawton, MB, Sikkema, PH (2015a) Glyphosate and acetolactate synthase inhibitor resistant common ragweed (Ambrosia artemisiifolia L.) in southwestern Ontario. Can J Plant Sci 95:335338 CrossRefGoogle Scholar
Van Wely, AC, Soltani, N, Robinson, DE, Hooker, DC, Lawton, MB, Sikkema, PH (2015b) Glyphosate-resistant common ragweed (Ambrosia artemisiifolia) control with postemergence herbicides and glyphosate dose response in soybean in Ontario. Weed Technol 29:380389 CrossRefGoogle Scholar
Walsh, MJ, Owen, MJ, Powles, SB (2007) Frequency and distribution of herbicide resistance in Raphanus raphanistrum populations randomly collected across the Western Australian wheatbelt. Weed Res 47:542550 CrossRefGoogle Scholar
Walsh, MJ, Stratford, K, Stone, K, Powles, SB (2012) Synergistic effects of atrazine and mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations and the potential for overcoming resistance to triazine herbicides. Weed Technol 26:341347 CrossRefGoogle Scholar
Weaver, SE (2001) Impact of lamb’s-quarters, common ragweed and green foxtail on yield of corn and soybean in Ontario. Can J Plant Sci 81:821828 CrossRefGoogle Scholar
Whaley, CM, Armel, GR, Wilson, HP, Hines, TE (2006) Comparison of mesotrione combinations with standard weed control programs in corn. Weed Technol 20:605611 CrossRefGoogle Scholar
Woodyard, AJ, Bollero, GA, Riechers, DE (2009) Broadleaf weed management in corn utilizing synergistic postemergence herbicide combinations. Weed Technol 23:513518 CrossRefGoogle Scholar
Wortman, SE (2014) Integrating weed and vegetable crop management with multifunctional air-propelled abrasive grits. Weed Technol 28:243252 CrossRefGoogle Scholar
Wright, TR, Shan, G, Walsh, TA, Lira, JM, Cui, C, Song, P, Zhuang, M, Arnold, NL, Lin, G, Russell, SM, Cicchillo, RM, Peterson, MA, Simpson, DM, Zhou, N, Ponsamuel, J, Yau, K, Zhang, Z (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxalkanoate dioxygenase transgenes. Proc Natl Acad Sci USA 107:2024020245 CrossRefGoogle ScholarPubMed
Zollinger, R, Ries, JL (2006) Comparing mesotrione, tembotrione, and topramezone. Page 114 in Proceedings of 61st Annual Meeting of the North Central Weed Science Society. Milwaukee, WI: North Central Weed Science SocietyGoogle Scholar