Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T17:03:01.770Z Has data issue: false hasContentIssue false

Formulating a Weed-Suppressive Bacterium in “Pesta”

Published online by Cambridge University Press:  20 January 2017

Donald J. Daigle*
Affiliation:
Southern Regional Research Center, ARS, USDA, P.O. Box 19687, New Orleans, LA 70179
William J. Connick Jr.
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada S7N 0X2
Susan M. Boyetchko
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada S7N 0X2
*
Corresponding author's E-mail: [email protected].

Abstract

“Pesta” is a granular, extruded product made from a cereal grain flour and any biological control agent. A strain of Pseudomonas fluorescens, BRG100, which is a pathogen of green foxtail, has been formulated into a Pesta product. P. fluorescens BRG100 survived processing best in oat flour, and the addition of 20% (wt/wt) maltose extended the shelf life of the product to more than 32 wk. Field studies of 8-wk duration showed that a Pesta product containing BRG100 suppressed green foxtail emergence by as much as 90%. An optimally formulated and processed Pesta product has potential for the biocontrol of green foxtail.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J. and Morrison, I. N. 1993. Effective kill of trifluralin-susceptible and -resistant green foxtail (Setaria viridis). Weed Technol. 7: 1522.CrossRefGoogle Scholar
Beckie, H. J., Thomas, A. G., and Legere, A. 1999. Nature, occurrence, and cost of herbicide-resistant green foxtail (Setaria viridis) across Saskatchewan ecoregions. Weed Technol. 13: 626631.Google Scholar
Boyetchko, S. M. 1997. Efficacy of rhizobacteria as biological control agents of grassy weeds. Proceedings of the Soils and Crop Workshop, February 20-21, 1997. Saskatoon, Saskatchewan, Canada: University of Saskatchewan. pp. 460462.Google Scholar
Boyetchko, S. M. and Mortensen, K. 1993. Use of rhizobacteria as biological control agents of downy brome. Proceedings of the Soils and Crops Workshop, February 25-26, 1993. Saskatoon, Saskatchewan, Canada: University of Saskatchewan. pp. 443448.Google Scholar
Connick, W. J. Jr., Boyette, C. D., and McAlpine, J. R. 1991. Formulation of mycoherbicides using a pasta-like process. Biol. Control 1: 281287.CrossRefGoogle Scholar
Connick, W. J. Jr., Daigle, D. J., Pepperman, A. B., Hebbar, K. P., Lumsden, R. D., Anderson, T. W., and Sands, D. C. 1998. Preparation of stable, granular formulations containing Fusarium oxysporum pathogenic to narcotic plants. Biol. Control 13: 7984.CrossRefGoogle Scholar
Connick, W. J. Jr., Daigle, D., Williams, K., Vinyard, B., Boyette, D., and Quimby, P. J. 1996. Shelf life of a bioherbicide product. Am. Biotechnol. Lab. 14: 3437.Google Scholar
Daigle, D. J., Connick, W. J. Jr., Boyette, C. D., Jackson, M. A., and Dorner, J. W. 1998. Solid-state fermentation plus extrusion to make biopesticide granules. Biotechnol. Tech. 12: 715719.Google Scholar
Daigle, D. J., Connick, W. J. Jr., Boyette, C. D., Lovisa, M. P., Williams, K. S., and Watson, M. 1997. Twin-screw extrusion of “Pesta”-encapsulated biocontrol agents. World J. Microbiol. Biotechnol. 13: 671676.CrossRefGoogle Scholar
Douglas, B. J., Thomas, A. G., Morrison, I. N., and Maw, M. G. 1985. The biology of Canadian weeds. 70. Setaria viridis (L.) Beauv. Can. J. Plant Sci. 65: 669690.Google Scholar
Hall, B. M., McLoughlin, A. J., Leung, K. T., Trevors, J. T., and Lee, H. 1998. Transport and survival of alginate-encapsulated and free lux-lac marked Pseudomonas aeruginosa UG2Lr cells in soil. FEMS Microbiol. Ecol. 26: 5161.Google Scholar
Kennedy, A. C., Elliott, L. F., Young, F. L., and Douglas, C. L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Sci. Soc. Am. J. 55: 722727.Google Scholar
Kennedy, A. C. and Kremer, R. J. 1996. Microorganisms in weed control strategies. J. Prod. Agric. 9: 480485.Google Scholar
Kremer, R. J. 1986. Bacteria can battle weed growth. Am. Nurseryman 164: 162163.Google Scholar
Kremer, R. J., Begonia, M.F.T., Stanley, L., and Lanham, E. T. 1990. Characterization of rhizobacteria associated with weed seedlings. Appl. Environ. Microbiol. 56: 16491655.CrossRefGoogle ScholarPubMed
Kremer, R. J. and Kennedy, A. C. 1996. Rhizobacteria as biological control agents of weeds. Weed Technol. 10: 601609.Google Scholar
Leslie, S. B., Israeli, E., Lighthart, B., Crowe, J. H., and Crowe, L. M. 1995. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61: 35923597.CrossRefGoogle ScholarPubMed
Mooney, H. D., Boyetchko, S. M., and Punja, Z. K. 1996. Development of application techniques for biological weed control using rhizobacteria. IX International Symposium on Biological Control of Weeds, Stellenbosch, South Africa. pp. 297299.Google Scholar
Oerke, E. C., Dehne, H. W., Schonbeck, F., and Weber, A. 1994. Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops. Amsterdam: Elsevier. 808 p.Google Scholar
Quimby, P. C., Zidack, N. K., Boyette, C. D., and Grey, W. E. 1999. A simple method for stabilizing and granulating fungi. Biocontrol Sci. Technol. 9: 58.Google Scholar
[SAS] Statistical Analysis Systems. 1999-2001. Version 8.2. Cary, NC: Statistical Analysis Systems Institute. 1686 p.Google Scholar
Sharma, M. P. and Vanden Born, W. H. 1978. The biology of Canadian weeds. 27. Avena fatua (L.). Can. J. Plant Sci. 58: 141157.Google Scholar