Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T03:16:19.581Z Has data issue: false hasContentIssue false

Field Evaluation of a Native Fungus for Control of Melaleuca (Melaleuca quinquenervia) in Southern Florida

Published online by Cambridge University Press:  12 June 2017

Min B. Rayachhetry*
Affiliation:
Fort Lauderdale Research and Education Center, University of Florida, 3205 College Avenue, Fort Lauderdale, FL 33314
Monica L. Elliott
Affiliation:
Fort Lauderdale Research and Education Center, University of Florida, 3205 College Avenue, Fort Lauderdale, FL 33314
Ted D. Center
Affiliation:
USDA-ARS, Weed Research Laboratory, 3205 College Avenue, Fort Lauderdale, FL 33314
Francois Laroche
Affiliation:
South Florida Water Management District, Gun Club Road, West Palm Beach, FL 33416
*
Corresponding author's E-mail: [email protected].

Abstract

A native fungus, Botryosphaeria ribis, was evaluated under field conditions to determine its potential to control melaleuca. Applications consisted of either wound inoculations of trees with B. ribis or fresh stump treatments with B. ribis alone or mixed with imazapyr herbicide. There was no mortality among nondefoliated trees inoculated with B. ribis. Mortality of B. ribis-inoculated trees was increased by three complete defoliation cycles. Defoliated trees inoculated with isolate BR-5 exhibited 100% mortality compared to 17% for defoliated but noninoculated trees. Wounds inoculated with B. ribis during winter produced longer cankers than did noninoculated wounds. Stump regrowth reduction by treatment with B. ribis alone was less effective than treatment with imazapyr alone. Mixtures of B. ribis with imazapyr or imazapyr alone at comparable concentrations did not differ in stump regrowth control.

Type
Research
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Florida Agricultural Experiment Station Journal Series R-06453.

References

Literature Cited

Anonymous. 1994. How low can you go? Fla. Exotic Pest Plant Counc. Bull. 4(4): 13.Google Scholar
Austin, D. F. 1978. Exotic plants and their effects in southeastern Florida. Environ. Conserv. 5:2534.CrossRefGoogle Scholar
Balciunas, J. K., Burrows, D. W., and Purcell, M. F. 1994. Field and laboratory host ranges of the Australian weevil, Oxyops vitiosa (Coleoptera: Curculionidae), a potential biological control agent for the paperbark tree, Melaleuca quinquenervia . Biol. Control 4:351360.CrossRefGoogle Scholar
Bodle, M. J., Ferriter, A. P., and Thayer, D. D. 1994. The biology, distribution, and ecological consequences of Melaleuca quinquenervia in the Everglades. In Davis, S. M. and Ogden, J. C., eds. The Everglades, the Ecosystem and its Restoration. Delray Beach, FL: St. Lucie Press. pp. 341355.Google Scholar
Charudattan, R. 1989. Assessment of efficacy of mycoherbicide candidates. In Delfosse, E. S., ed. Ist Sper. Patol. Veg. (MAF), Proc. VII. Int. Symp. Biol. Control of Weeds, March 6–11, 1988, Rome, Italy: Istituto Sperimentale per la Patologia Vegetale, Ministero dell, Agricoltura e delle Forestele. pp. 455464.Google Scholar
Christy, A. L., Herbst, K. A., Kostka, S. J., Mullen, J. P., and Carlson, P. S. 1993. Synergizing weed biocontrol agents with chemical herbicides. In Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Pest Control with Enhanced Environmental Safety. Washington, DC: American Chemical Society. pp. 87100.CrossRefGoogle Scholar
de Jong, M. D., Scheepens, P. C., and Zadoks, J. C. 1990. Risk analysis for biological control: a Dutch case study in biocontrol of Prunus serotina by the fungus Chondrostereum purpureum . Plant Dis. 74:189194.CrossRefGoogle Scholar
Diamond, C., Davis, D., and Schmitz, D. C. 1991. Economic impact statement: the addition of Melaleuca quinquenervia to the Florida prohibited aquatic plant list. In Center, T. D., Doren, R. F., Hofstetter, R. F., Myers, R. L., and Whiteaker, L. D., eds. Proc. Symp. Exotic Pest Plants, November 2–4, 1988, University of Miami. Washington, DC: U.S. Department of the Interior, National Park Services. pp. 87110.Google Scholar
Dorworth, C.E. 1995. Biological control of red alder (Alnus rubra) with the fungus Nectria ditissima . Weed Technol. 9:243248.CrossRefGoogle Scholar
Flowers, J. D. 1991. Subtropical fire suppression in Melaleuca quinquenervia. In Center, T. D., Doren, R. F., Hofstetter, R. H., Myers, R. L., and Whiteaker, L. D., eds. Proc. Symp. Exotic Pest Plants, November 2–4, 1988, University of Miami. Washington. DC: U.S. Department of Interior, National Park Services. pp. 151158.Google Scholar
Fox, E., Shotton, K., and Ulrich, C. 1995. Sigma Stat Statistical Software for Windows. Ver. 2.0. San Rafael, CA: Jandel Scientific Corporation.Google Scholar
French, D. W. and Schroeder, D. B. 1969. Oak wilt fungus, Ceratocystis fagacearum as a selective silvicide. For. Sci. 15:198203.Google Scholar
Hoagland, R. E. 1996. Chemical interactions with bioherbicides to improve efficacy. Weed Technol. 10:651674.CrossRefGoogle Scholar
Hofstetter, R. H. 1991. The current status of Melaleuca quinquenervia in southern Florida. In Center, T. D., Doren, R. F., Hofstetter, R. F., Myers, R. L., and Whiteaker, L. D., eds. Proc. Symp. Exotic Pest Plants, November 2–4, 1988, University of Miami. Washington, DC: U.S. Department of Interior, National Park Service. pp. 159176 Google Scholar
Laroche, F. B. and Ferriter, A. P. 1992. The rate of expansion of Melaleuca in south Florida. J. Aquat. Plant Manage. 30:6265.Google Scholar
Meskimen, G. F. 1962. A silvical study of the Melaleuca tree in south Florida. . School of Forest Resources and Conservation, University of Florida, Gainesville, FL. 177 p.Google Scholar
Morris, M. J. 1991. The use of plant pathogens for biological weed control in South Africa. Agric. Ecosys. Environ. 37:239255.CrossRefGoogle Scholar
Morris, M. J. 1997. Impact of the gall-forming rust fungus Uromycladium tepperianum on the invasive tree Acacia saligna in South Africa. Biol. Control 10:7582.CrossRefGoogle Scholar
Old, K. M., Gibbs, R., Graig, I., Myers, B. J., and Yuan, Z. Q. 1990. Effect of drought and defoliation on the susceptibility of eucalyptus to cankers caused by Endothia gyrosa and Botryosphaeria ribis . Aust. J. Bot. 38:571581.CrossRefGoogle Scholar
Rayachhetry, M. B. and Elliott, M. L. 1997. Evaluation of fungus–chemical compatibility for melaleuca (Melaleuca quinquenervia) control. Weed Technol. 11:6469.CrossRefGoogle Scholar
Rayachhetry, M. B., Blakeslee, G. M., and Center, T. D. 1996a. Predisposition of melaleuca (Melaleuca quinquenervia) to invasion by the potential biological control agent Botryosphaeria ribis . Weed Sci. 44:603608.CrossRefGoogle Scholar
Rayachhetry, M. B., Blakeslee, G. M., and Charudattan, R. 1996b. Susceptibility of Melaleuca quinquenervia to Botryosphaeria ribis, a potential biological control agent. Plant Dis. 80:145150.CrossRefGoogle Scholar
Rayachhetry, M. B., Blakeslee, G. M., and Kimbrough, J. W. 1996c. Characteristics of the Fusicoccum anamorph of Botryosphaeria ribis, a potential biological control agent for Melaleuca quinquenervia in south Florida. Mycologia 88:239248.CrossRefGoogle Scholar
Rayachhetry, M. B., Blakeslee, G. M., and Miller, T. 1996d. Histopathology of Botryosphaeria ribis in Melaleuca quinquenervia: pathogen invasion and host response. Int. J. Plant Sci. 157:219227.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1985. SAS User's Guide: Statistics. Ver. 5 ed. Cary, NC: Statistical Analysis Systems Institute. 584 p.Google Scholar
Schoeneweiss, D. F. 1967. Susceptibility of weakened cottonwood stems to fungi associated with blackstem. Plant Dis. Rep. 51:933935.Google Scholar
Schoeneweiss, D. F. 1974. Tubercularia ulmea canker of tallhedge: influence of freezing stress on disease susceptibility. Plant Dis. Rep. 58:937941.Google Scholar
Schoeneweiss, D. F. 1981. The role of environmental stress in diseases of woody plants. Plant Dis. 65:308314.CrossRefGoogle Scholar
Turner, C. E., Center, T. D., Burrows, D. W., Buckingham, G. R. 1998. Ecology and management of Melaleuca quinquenervia, an invader of wetlands in Florida, USA. Wetlands Ecol. Manage. 5:165178.CrossRefGoogle Scholar
Wall, R. E. 1994. Biological control of red alder using stem treatments with the fungus Chondrostereum purpureum . Can. J. For. Res. 24:15271530.CrossRefGoogle Scholar
Wargo, P. M., Parker, J., and Houston, D. R. 1973. Starch content of roots of defoliated sugar maple. Forest Sci. 18:203204.Google Scholar
Wene, E. G. and Schoeneweiss, D. F. 1980. Localized freezing disposition to Botryosphaeria canker in differentially frozen woody stems. Can. J. Bot. 58:14551458.CrossRefGoogle Scholar
Wilson, C. L. 1965. Consideration of the use of persimmon wilt as a silvicide for weed persimmon. Plant Dis. Rep. 49:789791.Google Scholar
Wilson, C. L. 1969. The use of plant pathogens in weed control. Ann. Rev. Plant Pathol. 7:411434.Google Scholar
Wineriter, S. and Buckingham, G. 1997. Love at first bite—introducing the Australian melaleuca weevil. Aquatics 19:1012.Google Scholar
Woodall, S. L. 1982. Seed dispersal in Melaleuca quinquenervia . Florida Sci. 45:8193.Google Scholar